
	
  

	
  

1 

 North American Climate in CMIP5 Experiments. 	
  1	
  

Part I: Evaluation of Historical Simulations of Continental and Regional 2	
  

Climatology 3	
  

Justin Sheffield, Andrew Barrett, Brian Colle, D. Nelun Fernando, Rong Fu, Kerrie L. 4	
  

Geil, Qi Hu, Jim Kinter, Sanjiv Kumar, Baird Langenbrunner, Kelly Lombardo, Lindsey 5	
  

N. Long, Eric Maloney, Annarita Mariotti, Joyce E. Meyerson, Kingtse C. Mo, J. David 6	
  

Neelin, Zaitao Pan, Tong Ren, Alfredo Ruiz-Barradas, Yolande L. Serra, Anji Seth, 7	
  

Jeanne M. Thibeault, Julienne C. Stroeve, Ze Yang, Lei Yin 8	
  

Justin Sheffield, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 9	
  

Brian Colle, Kelly Lombardo, School of Marine and Atmospheric Sciences, Stony Brook University - 10	
  

SUNY 11	
  

Rong Fu, Lei Yin, Ze Yang, Tong Ren, Jackson School of Geosciences, University of Texas at Austin, TX 12	
  

D. Nelun Fernando, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX and 13	
  

Visiting Scientist Programs, University Corporation for Atmospheric Research, Boulder, Colorado, and 14	
  

Surface Water Resource Division, Texas Water Development Board, Austin, TX 15	
  

Kerrie L. Geil, Department of Atmospheric Sciences, University of Arizona, Tucson, AZ 16	
  

Qu Hu, School of Natural Resources and Department of Earth and Atmospheric Sciences, University of 17	
  

Nebraska-Lincoln, Lincoln, NE 18	
  

Sanjiv Kumar, Jim Kinter, Center for Ocean-Land-Atmosphere Studies, Calverton, MD 19	
  

Baird Langenbrunner, Joyce E. Meyerson, J. David Neelin, Department of Atmospheric and Oceanic 20	
  

Sciences, University of California Los Angeles 21	
  

Lindsey N. Long, Wyle Science, Technology and Engineering, College 22	
  

Park, MD, and Climate Prediction Center/NCEP/NWS/NOAA, College Park, MD 23	
  

Eric D. Maloney, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 24	
  



	
  

	
  

2 

Annarita Mariotti, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric 25	
  

Research (NOAA/OAR), Silver Spring, MD 26	
  

Kingtse C. Mo, Climate Prediction Center/NCEP/NWS/NOAA, College Park, MD 27	
  

Zaitao Pan, Saint Louis University, St. Louis, MO 28	
  

Alfredo Ruiz-Barradas, Department of Atmospheric and Oceanic Science, University of Maryland, College 29	
  

Park, MD  30	
  

Yolande L. Serra, Department of Atmospheric Sciences, University of Arizona, Tucson, AZ 31	
  

Anji Seth and Jeanne M. Thibeault, Department of Geography, University of Connecticut, Storrs, CT 32	
  

Andrew Barrett, Julienne C Stroeve, National Snow and Ice Data Center, Cooperative Institute for 33	
  

Research in Environmental Sciences, University of Colorado, Boulder, CO 34	
  

 35	
  

 36	
  

Journal of Climate 37	
  

Submitted on July 30, 2012 38	
  

Revised February 3, 2013 39	
  

 40	
  

 41	
  

*Corresponding author address: Justin Sheffield, Department of Civil and Environmental 42	
  

Engineering, Princeton University, Princeton, NJ, 08540. Email: justin@princeton.edu  43	
  

 44	
  



	
  

	
  

3 

Abstract 45	
  

This is the first part of a three-part paper on North American climate in CMIP5 that 46	
  

evaluates the historical simulations of continental and regional climatology with a focus 47	
  

on a core set of seventeen models. We evaluate the models for a set of basic surface 48	
  

climate and hydrological variables and their extremes for the continent. This is 49	
  

supplemented by evaluations for selected regional climate processes relevant to North 50	
  

American climate, including cool season western Atlantic cyclones, the north American 51	
  

monsoon, the US Great Plains low level jet, and Arctic sea ice. In general, the multi-52	
  

model ensemble mean represents the observed spatial patterns of basic climate and 53	
  

hydrological variables but with large variability across models and regions in the 54	
  

magnitude and sign of errors. No single model stands out as being particularly better or 55	
  

worse across all analyses, although some models consistently outperform the others for 56	
  

certain variables across most regions and seasons, and higher resolution models tend to 57	
  

perform better for regional processes. The CMIP5 multi-model ensemble show a slight 58	
  

improvement relative to CMIP3 models in representing basic climate variables, in terms 59	
  

of the mean and spread, although performance has decreased for some models. 60	
  

Improvements in CMIP5 model performance are noticeable for some regional climate 61	
  

processes analyzed, such as the timing of the North American monsoon. The results of 62	
  

this paper have implications for the robustness of future projections of climate and its 63	
  

associated impacts, which are examined in the third part of the paper. 64	
  

  65	
  

  66	
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1. Introduction 67	
  

This is the first part of a three-part paper on the Climate Model Intercomparison 68	
  

Project phase 5 (CMIP5; Taylor et al., 2012) model simulations for North America. The 69	
  

first two papers evaluate the CMIP5 models in their ability to replicate the observed 70	
  

features of North American continental and regional climate, and related climate 71	
  

processes for the recent past. This first part evaluates the models in terms of continental 72	
  

and regional climatology and the second part (Sheffield et al. 2013) evaluates intra-73	
  

seasonal to decadal variability. The third part (Maloney et al., 2013) describes the 74	
  

projected changes for the 21st century.  75	
  

The CMIP5 provides an unprecedented collection of climate model output data 76	
  

for the assessment of future climate projections as well as evaluations of climate models 77	
  

for contemporary climate, the attribution of observed climate change and improved 78	
  

understanding of climate processes and feedbacks. As such, these data feed into the 79	
  

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), and 80	
  

other global, regional and national assessments. The goal of this study is to provide a 81	
  

broad evaluation of CMIP5 models in their depiction of North American climate and 82	
  

associated processes. The set of climate features and processes examined in this first part 83	
  

were chosen to cover the climatology of basic surface climate and hydrological variables 84	
  

and their extremes at daily to seasonal time scales, as well as selected climate features 85	
  

that have regional importance. The second part of this study (Sheffield et al. 2013) covers 86	
  

aspects of climate variability, such as intra-seasonal variability in the tropical Pacific, the 87	
  

El Niño Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation that play 88	
  

major roles in driving North American climate variability. This study draws from 89	
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individual work by investigators within the CMIP5 Task Force of the US National 90	
  

Oceanic and Atmospheric Administration (NOAA) Modeling Analysis and Prediction 91	
  

Program (MAPP). This is part of a Journal of Climate special collection on North 92	
  

America in CMIP5 models and we draw from individual papers within the special 93	
  

collection, which provide detailed analysis of some of the climate features examined 94	
  

here.  95	
  

We begin in Section 2 by describing the CMIP5, providing an overview of the 96	
  

models analyzed, the historical simulations and the general methodology for evaluating 97	
  

the models. We focus on a core set of 17 CMIP5 models that represent a large set of 98	
  

climate centers and model types, and synthesize model performance across all analyses 99	
  

for this core set. Details of the observational datasets to which the climate models are 100	
  

compared are also given in this section. The next two sections focus on different aspects 101	
  

of North American climate and surface processes. Section 3 begins with an overview of 102	
  

climate model depictions of continental climate, including seasonal precipitation, air 103	
  

temperature, sea surface temperatures, and atmospheric and surface water budgets. 104	
  

Section 4 evaluates the model simulations of extremes of temperature and surface 105	
  

hydrology, and temperature-based biophysical indicators such as growing season length. 106	
  

The next section 5 focuses on regional climate features such as north Atlantic winter 107	
  

storms, the Great Plains low level jet, and Arctic sea ice. The results are synthesized in 108	
  

Section 6 and compared to results from CMIP3 models for selected variables. 109	
  

 110	
  

2. CMIP5 Models and Simulations 111	
  

2.1. CMIP5 Models  112	
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We use data from multiple model simulations of the “historical” scenario from the 113	
  

CMIP5 database. The scenarios are described in more detail below. The CMIP5 114	
  

experiments were carried out by 20 modeling groups representing more than 50 climate 115	
  

models with the aim of further understanding past and future climate change in key areas 116	
  

of uncertainty (Taylor et al., 2012). In particular, experiments focus on understanding 117	
  

model differences in clouds and carbon feedbacks, quantifying decadal climate 118	
  

predictability and why models give different answers when driven by the same forcings. 119	
  

The CMIP5 builds on the previous phase (CMIP3) experiments in several ways. Firstly a 120	
  

greater number of modeling centers and models have participated. Secondly, the models 121	
  

generally run at higher spatial resolution with some models being more comprehensive in 122	
  

terms of the processes that they represent, therefore hopefully resulting in better skill in 123	
  

representing current climate conditions and reducing uncertainty in future projections. 124	
  

Table 1 provides an overview of the models used.  125	
  

To provide a consistent evaluation across the various analyses, we focus on a core 126	
  

set of 17 models, which are highlighted in the table by asterisks. The core set was chosen 127	
  

to span a diverse set of modeling centers and model types (coupled atmospheric-ocean 128	
  

models (AOGCM) and Earth system models (ESM)), and includes an AOGCM and ESM 129	
  

from the same modeling center for three centers (GFDL, Hadley Center, 130	
  

AORI/NIES/JAMSTEC). The set was restricted by data availability and processing 131	
  

constraints, and so for some analyses (in particular those requiring high temporal 132	
  

resolution data) a smaller subset of the core models was analyzed. When data for non-133	
  

core models were available, these were also evaluated for some analyses and the results 134	
  

are highlighted if they showed better (or particularly poor) performance. The specific 135	
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models used for each individual analysis are provided within the results section where 136	
  

appropriate. 137	
  

 138	
  

2.2. Overview of Methods 139	
  

Data from the “historical” CMIP5 scenarios are evaluated in this study. The 140	
  

“historical” simulations are run in coupled atmosphere-ocean mode forced by historical 141	
  

estimates of changes in atmospheric composition from natural and anthropogenic 142	
  

sources, volcanoes, greenhouse gases and aerosols, as well as changes in solar output and 143	
  

land cover. For certain basic climate variables we also analyze model simulations from 144	
  

the CMIP3 that provided the underlying climate model data to the fourth assessment 145	
  

report (AR4) of the IPCC. Several models have contributed to both the CMIP3 and 146	
  

CMIP5 experiments, either for the same version of the model, or for a newer version, and 147	
  

this allows a direct evaluation of changes in skill in individual models as well as the 148	
  

model ensemble.  149	
  

Historical scenario simulations were carried out for the period from the start of 150	
  

the industrial revolution to near present: 1850-2005. Our evaluations are generally carried 151	
  

out for the most recent 30 years, depending on the type of analysis and the availability of 152	
  

observations. For some analyses the only, or best available, data are from satellite remote 153	
  

sensing which restricts the analysis to the satellite period, which is generally from 1979 154	
  

onwards. For other analyses, multiple observational datasets are used to represent the 155	
  

uncertainty in the observations. An overview of the observational datasets used in the 156	
  

evaluations is given in Table 2, categorized by variable. Further details of these datasets 157	
  

and any data processing are given in the relevant sub-sections and figure captions. Where 158	
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the comparisons go beyond 2005 (e.g. 1979-2008), model data from the RCP8.5 future 159	
  

projection scenario simulation are appended to the model historical time series. Most of 160	
  

the models have multiple ensemble members and in general we use the first ensemble 161	
  

member. In some cases, the results for multiple ensembles are averaged where 162	
  

appropriate or used to assess the variability across ensemble members. Results are 163	
  

generally shown for the multi-model ensemble (MME) mean and for the individual 164	
  

models using performance metrics that quantify the errors relative to the observations. 165	
  

 166	
  

3. Continental Seasonal Climate 167	
  

 We begin by evaluating the seasonal climatologies of basic climate variables: 168	
  

precipitation, near surface air temperature, sea surface temperature (SST), and 169	
  

atmosphere-land water budgets. 170	
  

 171	
  

3.1. Seasonal Precipitation Climatology 172	
  

Figure 1 shows the model precipitation climatology and GPCP (Adler et al., 2003) 173	
  

observations for December-February (DJF) and June-August (JJA) for 1979-2005. Table 174	
  

3 shows the seasonal biases in precipitation for North America, the US and six regions. 175	
  

Most of the models do reasonably well in producing essential large-scale precipitation 176	
  

features and the bias in the MME mean seasonal precipitation over North America is 177	
  

about 12% and -1% for DJF and JJA, respectively. However, there are substantial 178	
  

differences among the models, and with observations at the regional scale (Table 3) and 179	
  

generally an overestimation of precipitation in more humid and cooler regions, and 180	
  

underestimation in drier regions. For the winter season (Fig. 1, left), the Pacific storm 181	
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track is very reasonably placed in latitude as it approaches the coast. One important 182	
  

aspect of this, the angle of the storm track as it bends northward approaching the coast 183	
  

from roughly Hawaii to Central California, is well reproduced in the models. The 184	
  

intensity of the storm tracks off the West Coast compares reasonably well to the GPCP 185	
  

product shown here. The model coastal rainfall is not quite intense enough at the coast 186	
  

and spreads slightly too far inland, as might be expected for the typical model resolution 187	
  

which does not fully resolve mountain ranges and may help explain the overestimation by 188	
  

all models for western North America (WNA, see Table 3 for region definitions). The 189	
  

east coast storm tracks are well placed in DJF (see section 5.1 on winter-time extra-190	
  

tropical cyclones) and the multi-model ensemble mean does a good job in replicating the 191	
  

Eastern Pacific Inter-Tropical Convergence Zone (ITCZ), although northern Mexico 192	
  

receives too much rainfall. Figures 1c provides a model by model view of these features 193	
  

using the 3 mm/day contour for each model to provide an outline of the major 194	
  

precipitation features. If the models were perfect, all contours would lie exactly along the 195	
  

boundary of the shaded observations. Taking into account the high latitude precipitation 196	
  

excess in the Pacific storm track, individual models do quite well at reproducing each of 197	
  

the main features of the DJF climatology, including the arrival point at the North 198	
  

American West Coast of the southern edge of the Pacific storm track. Only a few models 199	
  

exhibit the ITCZ extension feature that accounts for the northern Mexico precipitation 200	
  

excess.  201	
  

For the summer season (JJA; Fig. 1, right), the ITCZ and the Mexican monsoon 202	
  

are reasonably well simulated in terms of position (see section 5.4 on the North American 203	
  

monsoon), although the precipitation magnitude in parts of the Caribbean is 204	
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underestimated relative to GPCP. The East Coast storm track in the multi-model 205	
  

ensemble mean is too spread out and less coherent than observed. This is due to 206	
  

substantial differences in the placement of these storm tracks in the individual models 207	
  

(Fig. 1d). The majority of the models exhibit excessive precipitation in at least some part 208	
  

of the continental interior. While the bulk of the models do reasonably well at the 209	
  

poleward extension of the monsoon over Central America, Mexico and the Inter-210	
  

Americas Seas region, a few models underestimate this extent, putting a split between the 211	
  

poleward extension of the monsoon feature and the start of the East Coast storm track. 212	
  

Overall, the models underestimate JJA precipitation over the Central America (including 213	
  

Mexico), and Central North America regions (Table 3).  214	
  

 215	
  

3.2 Seasonal Surface Air Temperature Climatology 216	
  

Figure 2 compares the model simulated surface air temperature climatology to the 217	
  

observation estimates from NCEP-DOE Reanalysis 2 and the CRU TS3.0 station-based 218	
  

analysis, here both shown interpolated to the same 2.5° grid as the models. The MME 219	
  

mean compares well to the observations in most respects. Differences from both 220	
  

observational estimates are less than or on the order of 1°C over most of the continent 221	
  

except for certain regions (see Table 4). The multi-model ensemble mean is cooler than 222	
  

both data sets over northern Mexico in DJF. In high latitudes, differences between the 223	
  

observational estimates are large enough that the error patterns in Fig. 2f and Fig. 2g 224	
  

differ substantially, especially in DJF (NCEP-DOE is also slightly warmer than the North 225	
  

American Regional Reanalysis, not shown, in this region and season). Beyond the overall 226	
  

simulation of the north-south temperature gradient and seasonal evolution, certain 227	
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regional features are well represented. In JJA, this includes the regions of temperatures 228	
  

exceeding 30°C over Texas and near the Gulf of California, and the extent of 229	
  

temperatures above 10°C, including the northward extension of this region into the 230	
  

Canadian prairies. Individual model surface air temperature climatologies, shown in the 231	
  

supplementary material (Figs. S1 and S2) and in terms of biases in Table 4, exhibit 232	
  

substantial regional scatter, including excessive northward extent of the region above 233	
  

30°C through the Great Plains in three of the models (CanESM2, CSIRO-Mk3-6-0 and 234	
  

FGOALS-s2). In DJF, the multi-model ensemble mean does a good job of representing 235	
  

the 0°C contour, while the 10°C contour extends slightly too far south, yielding slightly 236	
  

cool temperatures over Mexico, with 15 out of 18 models with cold biases over the 237	
  

broader CAM region (Table 4). The wintertime cold bias relative to both observational 238	
  

estimates in very high latitudes is more pronounced in certain models such as HadGEM2-239	
  

ES, which is biased low by -7.0 and -5.1 oC over the ALA and NEC regions, respectively 240	
  

(Table 4). The inter-model scatter in surface temperature simulations is summarized in 241	
  

Fig. 2d for DJF and Fig. 2j for JJA using the inter-model standard deviation of the 242	
  

ensemble (i.e., the standard deviation at each gridpoint among the 18 model climatologies 243	
  

seen in Figs. S1 and S2). For DJF, the inter-model standard deviation is less than 2.5°C 244	
  

through most of the contiguous US but increases toward high latitudes, exceeding 3.5°C 245	
  

over much of the area north of 60°N. In JJA, there is a region of high inter-model 246	
  

standard deviation, exceeding 3.5°C, roughly in the Great Plains region in the northern 247	
  

US and southern Canada. This is a region with fairly high precipitation uncertainty in JJA 248	
  

(Fig. 1f), and changes in surface temperature in this region have been linked to factors 249	
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affecting soil moisture, including pre-season snowmelt (e.g., Hall et al. 2008), so this 250	
  

may be a suitable target for further study to reduce model uncertainty. 251	
  

 252	
  

3.3. Seasonal Sea Surface Temperature 253	
  

The annual cycle of sea surface temperature (SST) is shown in Figure 3 as winter-254	
  

to-spring (December-May) and summer-to-fall (June-November) means. We also show 255	
  

precipitation over land, which is generally associated with SST variations in adjoining 256	
  

ocean regions. Maps for individual models are shown in supplementary Figures S4 and 257	
  

S5. The Western Hemisphere Warm Pool (WHWP), where temperatures are equal or 258	
  

larger than 28.5°C, usually is absent from December to February, and appears in the 259	
  

Pacific from March to May, while it is present in the Caribbean and Gulf of Mexico from 260	
  

June to November (Wang and Enfield, 2001). The cooler part of the year is characterized 261	
  

by the small extension of SST in excess of 27°C and a suggestion of a cold tongue in the 262	
  

eastern equatorial Pacific, while during the warmer part of the year the extension of SSTs 263	
  

in excess of 27°C is maximum and the cold tongue is well defined over the eastern 264	
  

Pacific. High precipitation along the Mexican coasts, Central America, the Caribbean 265	
  

Islands and the central-eastern US are associated with the warm tropical SSTs during the 266	
  

warm half of the year. A decrease in the regional precipitation south of the equator is also 267	
  

evident in this warm half of the year.  268	
  

The MME mean shows the observed change in SST from cold to warm around the 269	
  

WHWP region, however the warm pool is absent over the Caribbean and Gulf of Mexico 270	
  

region. The change in precipitation from the cold to the warm parts of the year is 271	
  

represented by the MME mean including the increase in precipitation over central US and 272	
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Mexico as well as the decrease south of the equator. The eastern Pacific in the models is 273	
  

slightly cooler than observations in the cold part of the year but not in the form of weak 274	
  

cold tongue from the Peruvian coast but rather as a confined equatorial cooling away 275	
  

from the coast. The cold tongue along the eastern equatorial Pacific and along the coast 276	
  

of Peru during the warmer part of the year is reasonably represented by the MME mean 277	
  

although its extension is farther to the west. Differences with observations of the multi-278	
  

model mean indicate cool SST biases over the Pacific and Intra-American seas parts of 279	
  

the WHWP in all models in both the cold and warm parts of the year. Warm biases are 280	
  

evident close to the coasts of northeastern US, western Mexico and Peru. Precipitation 281	
  

biases indicate a wet/dry bias to the west/east of ~97°W northward of 15°N over Mexico 282	
  

and the US during both parts of the year (as well as the intense and extensive dry bias 283	
  

over South America to the east of the Andes); the cold bias over the Intra-Americas sea 284	
  

and the dry bias over the Great Plains in the US suggests a link between the two, 285	
  

considering the former is a great source of moisture for the latter. 286	
  

Spatial statistics for the mean annual SSTs are summarized in Table 5 for the 287	
  

individual CMIP5 models, and the MME mean. The spatial correlations are > 0.9 for all 288	
  

models, and are not able to quantitatively distinguish the performance of the models. The 289	
  

MME mean maximizes the spatial correlation (0.97) and minimizes the RMSE (0.77°C), 290	
  

but not the bias (-0.54°C). Eight of the models have RMSE values less than 1°C, and the 291	
  

largest biases (> 1.3oC) are for CSIRO-MK3.6, HadCM3, INMCM4, IPSL-CM5A-LR, 292	
  

and MIROC-ESM. The biases, except for INMCM4 and CCSM4, are negative, with the 293	
  

smallest bias for INMCM4, and the largest for CSIRO-MK3.6. 294	
  

 295	
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3.4. Seasonal Atmospheric and Land Water Budgets 296	
  

We next evaluate the climatologies of the atmospheric and land water budgets. 297	
  

Seasonal changes in atmospheric water content are relatively small compared to the 298	
  

moisture fluxes and so we focus on the latter. Variations in moisture divergence are 299	
  

generally correlated with seasonal precipitation and so may help explain biases in model 300	
  

precipitation. The vertically integrated moisture transport (vectors) and its divergence 301	
  

(contours) are shown in Fig. 4 for five CMIP5 models (the number of models was limited 302	
  

by the availability of high temporal resolution model data required to calculated the 303	
  

moisture fluxes) and observational estimates from the 20CR for mean JJA and DJF for 304	
  

1981-2000. In summer, the 20CR shows southerly transport from the North Atlantic 305	
  

anticyclone that splits into two distinct branches: one flanking the Atlantic seaboard with 306	
  

large scale convergence off the east coast and a second branch of moisture flows into the 307	
  

interior central plains which is associated with convergence over the Rocky Mountains. 308	
  

The western U.S. is dominated by divergence associated with the northerly component of 309	
  

the North Pacific anticyclone. The five models show the two branches of moisture 310	
  

transport, with associated convergence off the east coast and divergence in the plains, 311	
  

albeit weaker. They also simulate the divergence in much of the west, but they do not 312	
  

simulate the strong convergence over the Rockies and Mexican Plateau as seen in 20CR, 313	
  

which is associated with the low bias in precipitation over these regions (Table 3; mean 314	
  

biases for the five models shown here are -19.8% and -31.5% for CNA and CAM 315	
  

regions, respectively). Spatial correlations for divergence in the North American region 316	
  

range from 0.08 to 0.42, with MIROC5 and CNRM-CM5 performing the best out of the 317	
  

five models according to this measure (Table 6). In winter, the 20CR shows a more zonal 318	
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transport than during summer, with weaker flow around the subtropical anticyclones and 319	
  

moisture convergence across much of the continent. The models represent both the 320	
  

moisture transport and divergence patterns well including the stronger convergence in the 321	
  

Pacific Northwest and northern California and divergence in southern California, 322	
  

although the magnitude of divergence is too strong along the coasts, most notably for the 323	
  

CCSM4 and CNRM-CM5 models, and precipitation over the western North America is 324	
  

overestimated by all five models examined here (WNA and ALA regions, Table 3), and 325	
  

especially for the CCSM4. The improvement in winter over summer for the whole 326	
  

domain is evident in the spatial correlations, which range between 0.60 and 0.76 for 327	
  

winter, with a different set of models performing better than in summer (CanESM2, 328	
  

CCSM4, and CNRM-CM5 – Table 6). 329	
  

Evaluations of the model simulated terrestrial water budget are shown in Figures 330	
  

5 and 6 against the off-line land surface model (LSM) simulations. Fig. 5 shows the 331	
  

regional mean seasonal cycles of the components of the land surface water budget 332	
  

(precipitation, evapotranspiration, runoff, change in water storage). In reality, water 333	
  

storage includes soil moisture, surface water such as lakes, reservoirs, and wetlands, 334	
  

groundwater and snowpack, but, in general, the climate models only simulate the soil 335	
  

moisture and snowpack components. Figure 5 also separates out the snow component of 336	
  

the water budget in terms of the snow water equivalent (SWE). Most models have a 337	
  

reasonable seasonal cycle of precipitation and evapotranspiration but tend to overestimate 338	
  

precipitation in the more humid and cooler regions (WNA, ENA, ALA, NEC) as noted 339	
  

previously and overestimate evapotranspiration throughout the year and especially in the 340	
  

cooler months. Runoff is generally underestimated, particularly in the central and eastern 341	
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North American regions (CNA and ENA) and in northeast Canada (NEC) and central 342	
  

America (CAM). It also peaks earlier in the spring in some models (that can be linked to 343	
  

a shortened snow season; see below), although the models generally replicate the spatial 344	
  

variability in annual total runoff (Figure 6 and Figure S6 in the supplementary material). 345	
  

The majority of models overestimate total runoff over dry regions and high latitudes, 346	
  

particularly for the Pacific Northwest and Newfoundland. SWE is generally 347	
  

overestimated by the multi-model ensemble for western North America, underestimated 348	
  

in the east and overestimated in the Alaskan/Western Canada region, which are a 349	
  

reflection of the precipitation biases. These biases are also reflected in the change in 350	
  

storage, particularly for the Alaska region where many of the models show a large 351	
  

negative change during late spring melt due to overestimation of SWE. 352	
  

Figure 6 (Figure S6 for individual models) also shows the runoff ratio (runoff 353	
  

divided by precipitation) over North America, which indicates the production of water at 354	
  

the land surface that is subsequently potentially available as water resources. The 355	
  

remaining precipitation is partitioned into evapotranspiration (assuming that storage does 356	
  

not change much over long time periods). Overall the MME mean replicates the spatial 357	
  

pattern from the observational estimate with higher ratios in humid and cooler regions, 358	
  

and lower ratios in dry regions. However, the MME mean overestimates the ratios in 359	
  

humid and cooler regions, especially in Alaska, western and northern Canada, and 360	
  

underestimates the ratios in dry regions (Table 7). For North America overall, the models 361	
  

overestimate the ratios. The biases in runoff are better explained by biases in runoff ratios 362	
  

rather than biases in precipitation (not shown), especially in higher latitudes, highlighting 363	
  

the importance of the land surface schemes in the climate models and whether they are 364	
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able to realistically partition precipitation into runoff and evapotranspiration, and 365	
  

accumulate and melt snow. 366	
  

 367	
  

4. Continental Extremes and Biophysical Indicators 368	
  

 This next section examines the performance of the models in representing 369	
  

observed temperature and hydrological extremes. We first focus on temperature extremes 370	
  

and temperature dependent biophysical indicators, and then persistent seasonal 371	
  

hydrological extremes for precipitation and soil moisture. Regional extremes in 372	
  

temperature and precipitation are evaluated in Section 5. 373	
  

 374	
  

4.1. Temperature Extremes and Biophysical Indicators 375	
  

Temperature extremes have important consequences for many sectors including 376	
  

human health, ecosystem function, and agricultural production. We evaluate the models’ 377	
  

ability to replicate the observed spatial distribution over North America of the frequency 378	
  

of extremes (Figure 7) for the number of summer days with maximum temperature 379	
  

(Tmax) > 25oC and the number of frost days with minimum temperature (Tmin) < 0oC 380	
  

(Frich et al., 2002) and a set of biophysical indicators related to temperature: spring and 381	
  

fall freeze dates and growing season length. We define the growing season length 382	
  

following Schwartz et al. (2006) which is the number of days between the last spring 383	
  

freeze of the year and the first hard freeze of the autumn in the same year. A hard freeze 384	
  

is defined as when the daily minimum temperature drops below -2oC. 385	
  

Overall, the models tend to underestimate the number of summer days by about 386	
  

18 days over North America (Table 8), with regional underestimation of over 50 days in 387	
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the western US and Mexico, and parts of the eastern US, but otherwise are within 20 days 388	
  

of the observations for most other regions. Several models (CanESM4, CCSM4, CNRM-389	
  

CM5, MIROC, MIRCO-ESM) overestimate the number of summer days from the 390	
  

northeastern US up to the Canadian Northern Territories, but tend to have smaller 391	
  

underestimation in the western US and Mexico (see supplementary Figure S7). Nearly all 392	
  

other models have low biases of up to 50 days in these drier regions, which, at least for 393	
  

the western US, may be related to overestimation of precipitation and evapotranspiration 394	
  

(as shown in Section 3.4) and thus a reduction in sensible heating of the atmosphere. 395	
  

Several models have small biases for North America as a whole (Table 8), but often 396	
  

because large regional biases cancel out, and only the BCC-CSM1-1, CSIRO-Mk3-6-0 397	
  

and HadGEM2-ES models have reasonably low biases (< 30 days) across all regions. The 398	
  

first two of these models also have relatively low runoff ratio biases for the western and 399	
  

central North American regions (WNA, CNA) (HadGEM2-ES was not evaluated for 400	
  

surface hydrology) suggesting that their simulation of warm summer days is not impeded 401	
  

by biases in the surface energy budget. The number of frost days are better simulated in 402	
  

terms of overall MME mean bias (-2.8 days) but there is a positive bias for most models 403	
  

across the Canadian Rockies and down into the US Rockies for most models (see 404	
  

supplementary Figure S8). Some of the models are biased low in the central US by over 405	
  

50 days. Models with the least bias in frost days also tend to be the least biased models 406	
  

for summer days, but again many of the regional biases cancel out for the North America 407	
  

values. 408	
  

The models do reasonably well at depicting the spatial distribution of growing 409	
  

season length (MME mean bias = -8.5 days over North America). The largest biases of 410	
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between 30-50 days are in western Canada where the models underestimate and in the 411	
  

central US where they overestimate. The former is mainly because the last spring freeze 412	
  

is too late in western Canada and for the latter because of biases in both the last spring 413	
  

freeze (too early) and the first autumn freeze (too late). The INMCM4 model has the 414	
  

largest bias overall (-76 days), which is consistent over most of the continent (see Figure 415	
  

S9). The MIROC5 and MIROC-ESM models have the largest overestimations of 33 and 416	
  

38 days, respectively, and these biases are also consistent over much of the continent.  417	
  

 418	
  

4.2. Hydroclimate Extremes 419	
  

We examine the ability of CMIP5 models to simulate persistent drought and wet 420	
  

spells in terms of precipitation and soil moisture (SM). We focus on the US because of 421	
  

the availability of long-term estimates of SM from the NLDAS-US dataset. 422	
  

Meteorological drought and wet spells are characterized by the 6-month Standardized 423	
  

Precipitation Index (SPI6; McKee et al., 1993). Agricultural drought and wet spells are 424	
  

evaluated in terms of soil moisture percentiles (Mo, 2008). The record length, Ntotal, is 425	
  

defined as the total months from all ensemble simulations of a model or the total months 426	
  

of the observed data set. At each grid point, an extreme negative (positive) event is 427	
  

selected when the SPI6 index is below (above) -0.8 (0.8) for a dry (wet) event [Svoboda 428	
  

et al. 2002]. For SM percentiles, the threshold is 20% (80%) for a dry (wet) event. At 429	
  

each grid cell, the number of months that extreme events occur (N) is 20% of the record 430	
  

length by construct (N/Ntotal = 20%). Because a persistent drought event (wet event) 431	
  

usually means persistent dryness (wetness), a drought (wet) episode is selected when the 432	
  

index is below/above this threshold for 3 consecutive seasons (9 months) or longer. The 433	
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frequency of occurrence of persistent drought or wet spells (FOC) is defined as: FOC= 434	
  

Np/N, where Np is the number of months that an extreme event persists for 9 months. 435	
  

Figures 8 and 9 show the FOC averaged for persistent wet and dry events for SPI6 436	
  

and SM, respectively for 15 of the core models (the GFDL-ESM2M and INMCM4 model 437	
  

datasets only had a single ensemble member and the total record is therefore too short for 438	
  

the analysis). The most noticeable feature is the east-west contrast of the FOC for both 439	
  

SPI6 and SM as driven by the gradient in precipitation amount and variability (Mo and 440	
  

Schemm, 2008). Persistent drought and wet spells are more likely to occur over the 441	
  

western interior region, while extreme events are less likely to persist over the eastern US 442	
  

and the west coast. The maxima of the FOC are located in two bands, one located over 443	
  

the mountains and one extending from Oregon to Texas (Fig. 8-a). Persistent events are 444	
  

also found over the Great Plains. The CanESM2, CCSM4 and MIROC5 models show the 445	
  

east-west contrast, although the magnitudes of FOC are too weak for the CanESM2 446	
  

model. The center of maximum FOC for MIROC5 is too far south.  447	
  

Table 8 shows the performance of the models in representing the east-west 448	
  

contrast in terms of a FOC index defined as the difference in the fraction of grid cells 449	
  

with FOC greater than a given threshold between the western (32-48oN, 92-112oW) and 450	
  

eastern (32-48oN, 70-92oW) regions. The thresholds are 0.2 for SPI and 0.3 for SM. The 451	
  

FOC index values for the CCSM4 (0.35) and MIROC5 (0.34) models are closest to the 452	
  

observations (0.37) for SPI6. The MPI-ESM-LR model also shows the east-west contrast 453	
  

with one maximum located over Utah and another over the Great Plains, but the second 454	
  

maximum is too spatially extensive. The MIROC-ESM, MRI-CGCM3, and NorEMS1-M 455	
  

models all show a band of maxima over the Southwest, but the FOC north of 35oN is too 456	
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weak. Other models such as CSIRO-Mk3.6.0, IPSL-CM5A-LR, CNRM-CM5, GISS-E2-457	
  

R and GFDL-CM3 have the maxima located over the Gulf region, which is too far south. 458	
  

Finally, the HadCM3 and HadGEM2-ES (not shown) models do not have enough 459	
  

persistent events.  460	
  

For SM (Figure 9), the FOC from the NLDAS-UW shows that persistent 461	
  

anomalies are located west of 90oN over the western interior region, with a FOC index of 462	
  

0.68. Many of the models, such as BCC-CSM1.1, HadCM3, and IPSL-CM5A-LR, do not 463	
  

have enough persistent events, and the CanESM2, GISS-E2-R, and MRI-CGCM3 models 464	
  

shift the maxima to the central US. The CCSM4, GFDL-CM3, and NorESM1-M models 465	
  

fail to replicate the east-west contrast because of their high FOC values throughout most 466	
  

of the US. The best model for SM is the MPI-ESM-LR with a FOC index of 0.62, 467	
  

because it represents the east-west contrast and also has realistic magnitudes. The 468	
  

CSIRO-Mk3.6.0 model also simulates the east-west contrast, but the maximum is located 469	
  

south of the NLDAS-UW analysis maximum. 470	
  

 471	
  

5. Regional Climate Features 472	
  

We next evaluate the CMIP5 models for a set of regional climate features that 473	
  

have important regional consequences, either directly such as extreme temperature and 474	
  

precipitation in the southern US, and the North American Monsoon, or indirectly such as 475	
  

western Atlantic cool season cyclones and the US Great Plains low level jet. The last 476	
  

analysis examines the simulation of Arctic sea ice, which is important locally but also has 477	
  

implications for North American climate and elsewhere (Francis and Vavrus, 2012). 478	
  

 479	
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5.1. Cool Season Western Atlantic Extratropical Cyclones 480	
  

Extratropical cyclones can have major impacts (heavy snow, storm surge, winds, 481	
  

flooding) along the east coast of North America given the proximity of the western 482	
  

Atlantic storm track. The Hodges (1994; 1995) cyclone tracking scheme was 483	
  

implemented to track cyclones in 15 models (of which 12 were in the core set) for the 484	
  

cool seasons (November to March) for 1979-2004. The CFSR reanalysis was used to 485	
  

estimate observed cyclone tracks. Six-hourly mean sea-level pressure (MSLP) data were 486	
  

used to track the cyclones, since it was found that including 850-hPa vorticity tracking 487	
  

yielded too many cyclones. Since MSLP is strongly influenced by large spatial scales and 488	
  

strong background flows, a spectral bandpass filter was used to preprocess the data. 489	
  

Those wavelengths between 600 and 10,000 km were kept, and the MSLP pressure 490	
  

anomaly had to persist for at least 24 hours and move at least 1000 km. Colle et al. (2013) 491	
  

describes the details of the tracking approach and validation of the tracking procedure. 492	
  

Figure 10 shows the cyclone density during the cool season for the CFSR, mean 493	
  

and spread of the 15 models (see the legend of Fig. 11 for a complete listing), and select 494	
  

models for eastern North America and the western and central North Atlantic. There is a 495	
  

maximum in cyclone density in the CFSR over the Great Lakes, the western Atlantic 496	
  

from east of the Carolinas northeastward to east of Canada, and just east of southern 497	
  

Greenland (Figure 10a). The largest maximum over the western Atlantic (6-7 cyclones 498	
  

per cool season per 50,000 km2) is located along the northern boundary of the Gulf 499	
  

Stream current. The MME mean is able to realistically simulate the three separate 500	
  

maxima locations (Figure 10b), but the amplitude is 10-20% underpredicted. The cyclone 501	
  

density maximum over the western Atlantic does not conform to the boundary of the Gulf 502	
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Stream as much as observed. There is a large inter-model spread near the Gulf Stream, 503	
  

since some models are able to better simulate western Atlantic density amplitude, such as 504	
  

the CCSM4 and HadGEM2-CC (Figures 10e,f). However, the CCSM4 maximum is 505	
  

shifted a few hundred kilometers to the north.  506	
  

The distribution of cyclone central pressures at their maximum intensity were also 507	
  

compared (Figure 11) between the CFSR, MME mean, and individual models for the 508	
  

dashed box region in Figure 10b. There is a peak in cyclone intensity in both the CFSR 509	
  

and MME mean around 900-1000 hPa, and there is large spread in the model intensity 510	
  

distribution by almost a factor of two. The ensemble mean realistically predicts the 511	
  

number of average strength to relatively weak cyclones; however, the intensity 512	
  

distribution is too narrow compared to the CFSR, especially for the deeper cyclones < 513	
  

980 hPa.  514	
  

Colle et al. (2013) verified the 15 models by calculating the spatial correlation and 515	
  

mean absolute errors of the cyclone track densities and central pressures. They ranked the 516	
  

models and showed that 6 of the 7 best models were the higher resolution models (top 517	
  

three: EC-Earth, MRI-CGM3, and CNRM-CM5), since many lower resolution models, 518	
  

such as GFDL-ESM2M (Figures 10d), underpredict the cyclone density and intensity. 519	
  

The MME mean calculated using the 12 core models has verification scores within 5% of 520	
  

those from all 15 models (not shown), so it is likely that using all 17 core models in the 521	
  

cyclone analysis would not have much impact on the results. 522	
  

 523	
  

5.2. Northeast Cool Season Precipitation 524	
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We next examine regional precipitation in the highly populated northeast US, 525	
  

which is expected to increase in the future (Maloney et al., 2013). The focus is on the 526	
  

cool season, since extratropical cyclones provide much of the heavy precipitation in the 527	
  

northeast. 14 of the core models (listed in Figure 11; daily precipitation data were not 528	
  

available for three models) were evaluated for the cool seasons (November to March) of 529	
  

1979-2004. The model daily precipitation was compared with the CPC-Unified daily 530	
  

precipitation at 0.5 degree and CMAP monthly precipitation at 2.5 degree resolution. 531	
  

Figures 12a-c shows the seasonal average precipitation for the two observational 532	
  

analyses and the MME mean and spread. The heaviest precipitation (700-1000mm) is 533	
  

over the Gulf Stream, which is associated with the western Atlantic storm track. This 534	
  

maximum is well depicted in the multi-model mean, although it is underestimated by 50-535	
  

200mm, and there is a moderate spread between models (100-200mm). The precipitation 536	
  

over the northeast US ranges from 375mm in the northwestern part to around 500mm at 537	
  

the coast. The finer resolution CPC-Unified analysis has more variability downstream of 538	
  

the Great Lakes (lake effect snow) as well as some terrain enhancements. The models 539	
  

cannot resolve these smaller scale precipitation features, but the MME mean realistically 540	
  

represents the north to south variation. However, the MME mean overestimates 541	
  

precipitation by 25-75 mm (5-20%) over northern parts. Much of this overestimation is 542	
  

for thresholds greater than 5 mm day-1 over land. (Fig. 12d). The seasonal precipitation 543	
  

MME spread over the northeast is 100-150mm (25-40%), and much of this spread is 544	
  

reflected in the higher (> 10 mm day-1) thresholds, with the BCC-CMS1-1 simulating less 545	
  

than the CPC Unified analysis, and a cluster of models, such as the INMCM4 and 546	
  

MIROC5, having many more heavy precipitation events than observed.	
  	
  547	
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The model precipitation was verified against the CPC-Unified analysis for the 548	
  

black box region over the northeast US shown in Fig. 12b, and the models ranked in 549	
  

terms of their mean absolute errors (MAE) (Table 10). The MME mean has the lowest 550	
  

MAE. There is little relationship with resolution, since some relatively higher resolution 551	
  

models (e.g., MIROC5 and MRI-CGCM3) perform worse than many other lower 552	
  

resolution models. Most models have a 5-15% high bias in this region. There is little 553	
  

correlation (~0.22) between the high biases in precipitation in this region and the cyclone 554	
  

overestimation along the US East coast, thus suggesting the cyclone biases are coming 555	
  

from other processes than diabatic heating errors from precipitation. 556	
  

 557	
  

5.3. Extreme Temperature and Rainfall over the Southern US  558	
  

The southern regions of the US are historically prone to extreme climate events 559	
  

such as extreme summer temperatures, flood and dry spells. Previous CMIP and US 560	
  

climate impact assessments (Karl et al. 2009) have projected a large increase of these 561	
  

extreme events over regions of the south (southwest (SW), south central (SC), southeast 562	
  

(SE)), especially for the SW and SC US. However, to what extent climate models can 563	
  

adequately represent the statistical distributions of these extreme events over these 564	
  

regions is still unclear. Figure 13 compares the model simulated precipitation and 565	
  

temperature with observations as Taylor diagrams for 1) the annual number of heavy 566	
  

precipitation days (precipitation > 10mm day-1) and 2) the number of hot days (Tmax > 567	
  

32oC (90oF)). The observations are derived from the GHCN daily Tmax and Tmin gauge 568	
  

data and the CPC US-Mexico daily gridded precipitation dataset. Results are shown for 569	
  

15 models, 11 of which are core models, in terms of the spatial correlation with the 570	
  



	
  

	
  

26 

observations and standard deviation normalized by the observations. Table 11 also shows 571	
  

the regional biases. 572	
  

Overall, the spatial distribution of the number of heavy precipitation days is better 573	
  

simulated in the SW and SC than the SE, for which the spatial correlations are below 0.5, 574	
  

with many models having negative correlations. The normalized standard deviations are 575	
  

less than observed indicating that the models cannot capture the high spatial variability in 576	
  

this region. Part of the reason for this may be the severe underestimation of number of 577	
  

tropical cyclones (Sheffield et al., 2013), although other factors are likely involved such 578	
  

as the biases in summertime convective precipitation. For the SW and SC regions the 579	
  

models do reasonably well at replicating the spatial variation, although with some spread 580	
  

across models (correlation values of 0.56-0.91, and 0.59-0.97, for the SW and SC, 581	
  

respectively). The MME mean simulated number of heavy precipitation is biased slightly 582	
  

high for the SW (but note that the observed number of days, 8.5, is small), and low for 583	
  

the SC and SE. For individual models, the GISS-E2-R model has a large high bias in the 584	
  

SW and the CanESM2, GFDL-CM3, HadCM3, IPSL-CM5A-LR and MIROC5 models 585	
  

have large low biases (> 10 days) in the SC and SE. Several models do reasonably well 586	
  

for all regions (GFDL-ESM2G, GFDL-ESM2M, HadGEM2-CC, HadGEM2-ES, 587	
  

MIROC4h, MPI-ESM-LR and MRI-CGCM3) in terms of their biases.  588	
  

The number of hot days (Tmax > 32oC) are underestimated by the MME mean for 589	
  

all regions by between about 12-19 days, which is consistent with the underestimation of 590	
  

summer days (Tmax > 25oC) shown for N. America in Figure 7. Again the performance 591	
  

of the models in terms of spatial patterns and variability, and regional bias is generally 592	
  

worse for the SE. Interestingly, the three Hadley Center models considered here 593	
  



	
  

	
  

27 

(HadCM3, HadGEM2-CC and HadGEM2-ES) have the lowest biases for the SW and SC 594	
  

(except for the CCSM4), and in the SE (except for the MIROC models). The models tend 595	
  

to overestimate the spatial variability in the SW and underestimate it the SE, and the 596	
  

spatial correlations for the SW > SC > SE. The MIROC4h, which is a very high-597	
  

resolution model (0.56 degree grid), stands out for all regions and both variables as 598	
  

having high spatial correlation, and low bias for heavy precipitation days, although it 599	
  

generally has too high spatial variability relative to the observations. 600	
  

 601	
  

5.4. North American Monsoon 602	
  

The North American Monsoon (NAM) brings rainfall to southern Mexico in May, 603	
  

expanding northward to the southwest US by late June or early July. Monsoon rainfall 604	
  

accounts for roughly 50-70% of the annual totals in these regions (Douglas et al., 1993; 605	
  

Adams and Comrie, 1997), with the annual percentages decreasing northward where 606	
  

winter rains become increasingly important. The annual cycle of precipitation from the 607	
  

ITCZ through the NAM region is examined in Figure 14. The MME mean from the 17 608	
  

core models (averaged for longitudes 102.5°-115°W for 1979-2005) replicates the 609	
  

northward migration of precipitation in the NAM region during the warm season, but is 610	
  

biased low. However, the MME mean precipitation  begins later, ends later, and is 611	
  

stronger than the observed estimate from CMAP within the core monsoon region north of 612	
  

20oN. Within the latitudes of the ITCZ (up to 12°N), the models strongly underestimate 613	
  

the precipitation and fail to show the northward migration from stronger precipitation in 614	
  

May south of 8°N to a maximum in July near 10°N.  Instead, the models tend to place the 615	
  

spring maximum at 10°N and have a late build up and late demise at all latitudes of the 616	
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ITCZ through boreal summer. Table 12 shows the RMSE for individual models over the 617	
  

domain shown in Figure 14 and indicates that the CanESM2, HadCM3 and HadGEM2-618	
  

ES models have the lowest errors (< 0.75 mm day-1) and the BCC-CSM1-1, NorESM1-M 619	
  

and MRI-CGCM3 the highest (> 1.9 mm day-1). 620	
  

The seasonal cycle of monthly precipitation in the core NAM region of northwest 621	
  

Mexico (23.875°-28.875°N, 108.875°-104.875°W) is also examined in Table 13 and 622	
  

Figures 15 for the core models plus four other models. Our core domain is similar to that 623	
  

used by the North American Monsoon Experiment (NAME; Higgins et al. 2006) and 624	
  

related studies (e.g., Higgins and Gochis, 2007; Gutzler et al., 2009), but has been 625	
  

reduced in size to ensure consistency of the monsoon precipitation signal at each grid 626	
  

point. Following the methodology of Liang et al. (2008) for analysis of CMIP3 data, we 627	
  

calculate a phase and RMS error of each model's seasonal cycle, where the phase error is 628	
  

defined as the lag in months with the best correlation to the observations (Table 13). The 629	
  

observations used are the P-NOAA, which is a recently developed gauge-based dataset 630	
  

that is likely more accurate than the CMAP for this region. We additionally calculate 631	
  

each model's annual bias as a percentage of the mean monthly climatological P-NOAA 632	
  

value (1.66 mm day-1). The seasonal cycles for models with small (lag=0), moderate 633	
  

(lag=1) and large (lag=2-4) phase errors are shown in Figure 15a-c. Figure 15d shows the 634	
  

MME mean for all phase errors, their spread and the observations. 635	
  

Overall the small phase error models tend to overestimate rainfall in the core 636	
  

NAM region compared to the two observational data sets throughout the year, with the 637	
  

largest errors seen in fall, consistent with Figure 14. The overestimation of rainfall by the 638	
  

models beyond the end of the monsoon season is also apparent in the small and large 639	
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phase error CMIP3 models (Liang et al. 2008). The similarity between the range of 640	
  

RMSE values (0.46-2.23 mm day-1) in their study of CMIP3 models and that of the 641	
  

CMIP5 models in this analysis indicates that there has been no improvement in the 642	
  

magnitude of the simulated annual cycle of monthly precipitation, with the lowest and 643	
  

highest RMSE values having increased slightly since the previous generation of models.  644	
  

On the other hand, there does seem to be improvement in the timing of seasonal 645	
  

precipitation shifts, with 13 out of 21 (62%) CMIP5 models having a phase lag of zero 646	
  

months as compared to 6 out of 17 (35%) CMIP3 models in Liang et al. (2008). The top 647	
  

ranking models for phase, RMSE and bias shown in Table 13 (HadCM3, HadGEM2-ES, 648	
  

CNRM-CM5, CanESM2, HadGEM2-CC) are also the models with the highest spatial 649	
  

correlations of May-October 850hPa geopotential heights and winds when compared with 650	
  

the ERA-Interim (Geil et al. 2013). The HadCM3, HadGEM2-ES and CanESM2 also 651	
  

perform the best over the larger monsoon region (Table 12). Geil et al. (2013) find that 652	
  

the models that best represent the seasonal shift of the monsoon ridge and subtropical 653	
  

highs over the North Pacific and Atlantic tend to have the least trouble ending the 654	
  

monsoon, suggesting there is room for improvement over the region through an improved 655	
  

representation of the seasonal cycle in these large-scale features. 656	
  

 657	
  

5.5. Great Plains Low Level Jet 658	
  

An outstanding feature of the warm season (May-September) circulation in North 659	
  

America is the strong and channeled southerly low-level flows, or the Great Plains low-660	
  

level jet (LLJ), from the Gulf of Mexico to the central US and the Midwest (Bonner and 661	
  

Paegle 1970; Mitchell et al. 1995). The LLJ emerges in early May in the transition of the 662	
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circulation from the cold to the warm season. It reaches its maximum strength in June and 663	
  

July. After August, the jet weakens and disappears in September when the cold season 664	
  

circulation starts to set in. While many studies have examined specific processes 665	
  

associated with the LLJ (Blackadar, 1957; Wexler, 1961; Holton, 1967), such as its 666	
  

nocturnal peak in diurnal wind speed oscillation, as well as precipitation, the jet is a part 667	
  

of the seasonal circulation shaped primarily by the orographic configuration in North 668	
  

America, particularly the Rocky Mountain Plateau (e.g., Wexler, 1961). An important 669	
  

climatic role of the LLJ is transporting moisture from the Gulf of Mexico to the central 670	
  

and eastern US (Benton and Estoque, 1954; Rasmusson, 1967; Helfand and Schubert, 671	
  

1995; Byerle and Paegle, 2003). Because the moisture is essential for development of 672	
  

precipitation, even though additional dynamic processes are required for the latter to 673	
  

happen (Veres and Hu 2013), correctly describing the LLJ and its seasonal cycle is 674	
  

critical for simulating and predicting warm season precipitation and climate in central 675	
  

North America. 676	
  

Outputs from eight of the core models (CanESM2, CCSM4, CNRM-CM5, 677	
  

GFDL-ESM2M, HadGEM2-ES, MIROC5, MPI-ESM-LR, and MRI-CGCM3) were 678	
  

analyzed for their simulation of the LLJ. Figure 16 compares the spatial profile and 679	
  

seasonal cycle between the MME mean and the NCEP/NCAR reanalysis in terms of the 680	
  

summer 925hPa winds, the vertical structure of the summer meridional wind, and the 681	
  

seasonal cycle of the LLJ. While the overall features of the simulated LLJ compare well 682	
  

with the reanalysis results, several details differ. First of all the models produce a peak 683	
  

meridional wind around 925hPa whereas the reanalysis result peaks around 850hPa. This 684	
  

difference has little impact from the vertical resolution of the models and the reanalysis 685	
  



	
  

	
  

31 

because they share the same vertical resolution below 500hPa. For a few models that 686	
  

have more model levels below 500hPa their vertical profile of the meridional wind shows 687	
  

a similar peak at 925hPa. The vertical extent of the LLJ is shallower than that shown in 688	
  

the reanalysis, as suggested by the differences in Fig. 16f, which may be related to the 689	
  

peak wind being at a lower level in the troposphere. Secondly, the simulated LLJ extends 690	
  

much further northwards in the Great Plains than the reanalysis (Fig. 16g,h,i). For the 691	
  

seasonal cycle, the models show strong southerly winds that persist from mid-May to 692	
  

near the end of July whereas the reanalysis shows that the LLJ weakens substantially in 693	
  

early July (Fig. 16i). While these detailed differences exist, the error statistics in Table 14 694	
  

indicate that these eight models simulate the LLJ satisfactorily. 695	
  

 696	
  

5.6. Arctic/Alaska Sea Ice 697	
  

Since routine monitoring by satellites began in late October 1978, Arctic sea ice 698	
  

has declined in all calendar months (e.g. Serreze et al., 2007). Trends are largest at the 699	
  

end of the summer melt season in September with a current rate of decline through 2012 700	
  

of -14.3% per decade. Regionally, summer ice losses have been pronounced in the 701	
  

Beaufort, Chukchi and East Siberian seas since 2002 causing a lengthening of the ice-free 702	
  

season. The presence of sea ice helps to protect Alaskan coastal regions from wind-driven 703	
  

waves and warm ocean water that can weaken frozen ground. As the sea ice has retreated 704	
  

further from coastal regions, and ice-free summer conditions are lasting for longer 705	
  

periods of time (in some regions by more than 2 months during the satellite data record), 706	
  

wind-driven waves, combined with permafrost thaw and warmer ocean temperatures, 707	
  

have led to rapid coastal erosion (Mars and Houseknecht, 2007; Jones, et al., 2009). 708	
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While the winter ice cover is not projected to disappear in the near future, all 709	
  

models that contributed to the IPCC 2007 report showed that as temperatures rise, the 710	
  

Arctic Ocean would eventually become ice-free in the summer (e.g. Stroeve et al., 2007). 711	
  

However, estimates differed widely, with some models suggesting a transition towards a 712	
  

seasonally ice-free Arctic may happen before 2050, and others, sometime after 2100. To 713	
  

reduce the spread some studies suggest using only models that are able to reproduce the 714	
  

historical sea ice extent (e.g. Overland et al., 2011; Wang and Overland, 2009). 715	
  

Historical sea ice extent (1953-2005) from 26 models during September and 716	
  

March is presented as box and whisker plots (Figure 17), constructed from all ensemble 717	
  

members of all models, with the width of the box representing the number of ensemble 718	
  

members. Table 15 shows the biases for the individual models. Five climate models 719	
  

(CanESM2, EC-EARTH, GISS-E2-R, HadGEM2-AO and MIROC4h) have mean 720	
  

September extents that fall below the minimum observed value, with EC-EARTH, GISS-721	
  

E2-R and CanESM2 having more than 75% of their extents below the minimum observed 722	
  

value. Three models (CSIRO-Mk3-1-0, FGOALS-s2, NorESM1-M) have more than 75% 723	
  

of their extents above the maximum observed value. Overall, 14 models have mean 724	
  

extents below the observed 1979-2005 mean September extent. During March, several 725	
  

models fall outside the observed range of extents, with 16 models having more than 75% 726	
  

of their extents outside the observed maximum and minimum values (8 above, 8 below). 727	
  

Six models essentially straddle the mean observed March sea ice extent. 728	
  

Spatial maps of March and September CMIP5 sea ice thickness averaged from 729	
  

1993 to 2005 are shown in Figure 18 together with thickness estimates from ERS1/2 730	
  

(1993-2001; Laxon et al., 2003), ICESat (2003-2009; Kwok and Cunnigham, 2008) and 731	
  



	
  

	
  

33 

IceBridge (2009-2012; Kurtz et al., 2012). Table 15 shows the biases for the individual 732	
  

models relative to the ICESat data. While we do not expect the models to be in phase 733	
  

with the observed natural climate variability and therefore accurately represent the 734	
  

magnitude of the ICESat thickness fields, it is important to assess whether or not the 735	
  

models are able to reproduce the observed spatial distribution of ice thickness. Data from 736	
  

ICESat and IceBridge, as well as earlier radar altimetry missions (ERS1/2) and 737	
  

submarine tracks indicate that the thickest ice is located north of Greenland and the 738	
  

Canadian Archipelago (> 5m thick) where there is an onshore component of ice motion 739	
  

resulting in strong ridging. Thicknesses are smaller on the Eurasian side of the Arctic 740	
  

Ocean where there is persistent offshore motion of ice and divergence, leading to new ice 741	
  

growth in open water areas. Most models fail to show thin ice close to the Eurasian coast 742	
  

and thicker ice along the Canadian Arctic Archipelago and north coast of Greenland. 743	
  

Instead, many models show a ridge of thick ice that spans north of Greenland across the 744	
  

Lomonosov Ridge towards the East Siberian Shelf, with thinner ice in the 745	
  

Beaufort/Chukchi and the Kara/Barents seas. In large part this is explained in terms of 746	
  

biases in the distribution of surface winds; for example, if a model fails to produce a 747	
  

well-structured Beaufort Sea High, this will adversely affect the ice drift pattern and 748	
  

hence the thickness pattern. Nevertheless, when we compare mean thickness fields from 749	
  

IceBridge, ICESat and ERS1/2 with thickness fields from the CMIP5 models for the 750	
  

period 2000 to 2010, we find that for the Arctic Ocean as a whole, the thickness 751	
  

distributions from the models overlap with those from the satellite and airborne derived 752	
  

products. However, for the North American side of the Arctic Ocean model thicknesses 753	
  

tend be smaller than thicknesses estimated from derived products. This in part explains 754	
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the low bias in September ice extent for some of the models, as thinner ice is more prone 755	
  

to melting out in summer. Models with extensively thick winter ice (e.g. NorESM1-M 756	
  

and MIROC5) on the other hand tend to overestimate the observed September ice extent. 757	
  

 758	
  

6. Discussion and Conclusions 759	
  

 760	
  

6.1. Synthesis of Model Performance 761	
  

This study evaluates the CMIP5 models for a set of basic climate and surface 762	
  

hydrological variables for annual and seasonal means and extremes, and selected regional 763	
  

climate features. Evaluations of model performance are not straightforward because of 764	
  

the broad range of uses of climate model data (Glecker et al., 2008) and therefore there is 765	
  

not an accepted universal set of performance metrics. Issues relevant to performance are 766	
  

dependent on several elements including decadal variability, observational uncertainties, 767	
  

and that some models are tuned to certain processes, often at the expense of other aspects 768	
  

of climate. The performance metrics evaluated here are generally focused on basic 769	
  

climate variables and standard statistical measures such as bias, RMSE and spatial 770	
  

correlation. One of the strengths this study is the broad range of evaluations that test 771	
  

multiple aspects of the model simulations at various time and space scales, and for 772	
  

specific important regional features that we do not necessarily expect coarse resolution 773	
  

models to simulate well. Independently these metrics indicate much better performance 774	
  

by certain models relative to the ensemble, whilst some models have poor performance in 775	
  

that a feature is not simulated at all, such as lack of persistence in extreme hydrological 776	
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events, or the errors are unacceptably large. However, it is not clear whether one model 777	
  

or set of models performs better than others for the full set of climate variables. 778	
  

Figure 19 shows a summary ranking of model performance across all continental 779	
  

and US domain analyses presented in sections 3 and 4 in terms of biases with the 780	
  

observational estimates. We choose not to show results for the regional processes as these 781	
  

are generally for fewer models and only provide one sample of important features of 782	
  

North American climate. Other metrics, such as the RMSE, could have been used, but the 783	
  

bias values were available for all continental analyses. Model performance is shown by 784	
  

two methods: the first is the normalized bias, calculated as the difference of the absolute 785	
  

model bias from the lowest absolute bias value, divided by the range in absolute bias 786	
  

values across all models. A value of 0.0 indicates the lowest absolute bias and a value of 787	
  

1.0 indicates the highest value. The values reflect the distribution of values across models 788	
  

such that outlier models are still identified. The second method is the rank of the sorted 789	
  

absolute bias values, which is uniformly distributed. 790	
  

The first thing to note is the difference in spread between the two panels in Figure 791	
  

19 for individual metrics, which is a reflection of the two types of distribution of values 792	
  

(model ensemble dependent and uniform). The normalized metrics highlight outlier 793	
  

models that perform much better than the rest of the models (e.g. BCC-CSM1.1 for 794	
  

runoff ratios (Q/P)) or much worse (e.g. INMCM4 for DJF precipitation or CanEMS2 for 795	
  

JJA temperature). Another example is persistent precipitation events (P persist US), for 796	
  

which there is a cluster of eight models that do equally poorly compared to the rest of the 797	
  

models. No single model stands out as being better or worse for multiple metrics. Some 798	
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models do relatively well for the same variable and a single/both season across all 799	
  

regions, such as HadGEM2-ES and MIROC5 for precipitation.  800	
  

The rankings in the lower panel are more clustered across analyses, such as for 801	
  

the Hadley Center models for DJF temperature, although the actual biases are generally 802	
  

not that different to the other models. The MRI-CGCM3 is consistently ranked low for 803	
  

runoff ratios in all regions and for the number of summer/frost days and growing season 804	
  

length (and in terms of the normalized metrics). The INMCM4 model is consistently 805	
  

ranked low for precipitation in both seasons and DJF temperature, although again its 806	
  

normalized values are generally not very different from the other models. It is tempting to 807	
  

provide an overall ranking or weighted metric across all analyses for each model, but 808	
  

there is no obivious way of doing this for a diverse set of metrics, although this has been 809	
  

attempted in other studies (e.g. Reichler and Kim, 2008). Nevertheless, it is useful to 810	
  

identify those models that are ranked highly for multiple metrics. For example, the 811	
  

following models are ranked in the top 5 for at least 12 metrics (approximately one third 812	
  

of the total number of metrics): MPI-ESM-LR (16 metrics), GISS-E2-R (15), CCSM4 813	
  

(14), CSIRO-Mk3.6.0 (14), BCC-CSM1-1 (12); with the bottom two models: GFDL-814	
  

CM3 (6) and INMCM4 (4). 815	
  

 816	
  

6.2. Changes in Performance between CMIP3 and CMIP5 for Basic Climate Variables 817	
  

A key question is whether the CMIP5 results have improved since CMIP3, and 818	
  

why. As mentioned in the introduction, the CMIP5 models generally have higher 819	
  

horizontal resolution and have improved parameterizations and additional process 820	
  

representations since CMIP3. Several of the analyses presented here indicate improved 821	
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results since CMIP3, for example for the North American monsoon, by comparison with 822	
  

earlier studies. Here we show a direct comparison of CMIP5 with CMIP3 results for 823	
  

basic climate variables in Figure 20, which shows RMSE values for CMIP5 and CMIP3 824	
  

models for seasonal precipitation and surface air temperature over North America and 825	
  

SSTs over the surrounding oceans. 14 of the 17 core CMIP5 models have an equivalent 826	
  

CMIP3 model, that is the same model (HadCM3), a newer version, or an earlier related 827	
  

version, and so a direct comparison of any improvements since CMIP5 is feasible.  828	
  

Overall, the MME mean performance has improved slightly in CMIP5 for nearly 829	
  

all variables. For example, there is a reduction in the MME mean RMSE for summer 830	
  

precipitation (0.90 mm day-1 for CMIP3, 0.86 mm day-1 for CMIP5), and for winter SSTs 831	
  

(1.72 oC to 1.55 oC). The largest percentage reduction in RSME for the MME mean is for 832	
  

summer temperatures (11.8% reduction in RMSE). The spread in model performance (as 833	
  

quantified by the standard deviation) has remained about the same for precipitation, 834	
  

increased for temperature and decreased for SSTs. The increase in spread for temperature 835	
  

is due to both increases and decreases in model performance relative to the CMIP3 836	
  

models. Several models have improved considerably and across nearly all variables and 837	
  

seasons, such as the CCSM4, INMCM4, IPSL-CM5A-LR, and MIROC5. Reductions in 838	
  

performance for individual models are less prevalent across variables, but are large for 839	
  

CSIRO-Mk3.6.0, HadCM3, and MRI-CGCM3 for SSTs in both seasons. The CanESM2 840	
  

has worse performance than its CMIP3 equivalent (CGCM3.1) for all variables, although 841	
  

it is unclear how the two models are related. Interestingly the HadCM3 model, which is 842	
  

used for both the CMIP3 and CMIP5 simulations, appears to have degraded in 843	
  

performance for SSTs. 844	
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 845	
  

6.3. Summary and Conclusions 846	
  

We have evaluated the CMIP5 multi-model ensemble for its depiction of North 847	
  

American continental and regional climatology, with a focus on a core set of models. 848	
  

Overall, the multi-model ensemble does reasonably well in representing the main features 849	
  

of basic surface climate over North America and the adjoining seas. Regional 850	
  

performance for basic climate variables is highly variable across models, however, and 851	
  

this can bias the assessment of the ensemble because of outlier models and therefore the 852	
  

median value may be a better representation of the central tendency of model 853	
  

performance (Liepert and Previdi, 2012). No particular model stands out as performing 854	
  

better than others across all analyses, although some models perform much better for sets 855	
  

of metrics, mainly for the same variable across different regions. Higher resolution 856	
  

models tend to do better at some aspects than others, especially for the regional features 857	
  

as expected, but not universally so and not for basic climate variables. 858	
  

There are systematic biases in precipitation with overestimation for more humid 859	
  

and cooler regions and underestimation for drier regions. Biases in precipitation filter 860	
  

down to biases in the surface hydrology, although this is also related to the representation 861	
  

of the land surface in many models, with implications for assessment of water resources 862	
  

and hydrological extremes. The poor performance in representing observed seasonal 863	
  

persistence in precipitation and soil moisture is a reflection of this. As many of the errors 864	
  

are systematic across models, there is potential for diagnosing these further based on a 865	
  

multi-model analysis. 866	
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The models have a harder time representing extreme values, such as those based 867	
  

on temperature and precipitation. The biases in temperature means and extremes may be 868	
  

related to those in land hydrology that affects the surface energy balance and therefore 869	
  

can impact how much energy goes into heating the near surface air during dry periods 870	
  

and in drier regions. Biases in precipitation and its extremes are likely related to 871	
  

differences in large-scale circulation and SST patterns, as well as problems in 872	
  

representing regional climate features. Hints of this are shown in the some of the analyses 873	
  

presented here, such as the errors in regional moisture divergence over North America, 874	
  

but linkages between other regional climate features and terrestrial precipitation biases 875	
  

are not apparent, such as for western Atlantic winter cyclones, and further investigation is 876	
  

required to diagnose these. Part 2 of this paper (Sheffield et al., 2013) indicates that most 877	
  

models have trouble representing teleconnections between modes of climate variability 878	
  

(such as ENSO) and continental surface climate variables, and this may also reflect the 879	
  

representation of mean climate.  880	
  

Overall, the performance of the CMIP5 models in representing observed climate 881	
  

features has not improved dramatically compared to CMIP3, at least for the set of models 882	
  

and climate features analyzed here. There are some models that have improved for certain 883	
  

features (e.g. the timing of the NAM), but others that have become worse (e.g. 884	
  

continental seasonal surface climate).  885	
  

The results of this paper have implications for the robustness of future projections 886	
  

of climate and its associated impacts. Part three of this paper (Maloney et al., 2013) 887	
  

evaluates the CMIP5 models for N. America in terms of the future projections for the 888	
  

same set of climate features as evaluated for the 20th century in this first part and the 889	
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second part of the paper (Sheffield et al., 2013). Whilst model historical performance is 890	
  

not sufficient for credible projections, the depiction of at least large scale climate features 891	
  

is necessary. Overall, the models do well in replicating the broad scale climate of N. 892	
  

America and some regional features, but biases in some aspects are of the same 893	
  

magnitude as the projected changes (Maloney et al., 2013). For example, the low bias in 894	
  

daily maximum temperature over the southern US in some models is similar to the future 895	
  

projected changes. Furthermore, the uncertainty in the future projections across models 896	
  

can also be of the same magnitude the model spread for the historic period.  897	
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Figure Captions 1125	
  

Figure 1. Precipitation climatology for (left) December-February and (right) June-August 1126	
  
(1979-2005). a) GPCP estimate of observed precipitation for DJF. b) MME mean over 1127	
  
the 18 models for DJF; for models with multiple runs, all runs are averaged before 1128	
  
inclusion in the multi-model ensemble. c) Comparison of individual models to 1129	
  
observations using the 3 mm day-1 contour as an index of the major precipitation features: 1130	
  
half the models are shown in each of sub-panel I and II with the legend giving the color-1131	
  
coding for the models in each. Shading shows the regions where GPCP exceeds 3 mm 1132	
  
day-1; a model with no error would have its contour fall exactly along the edge of the 1133	
  
shaded region. d)-f) As in a)-c), respectively, except for JJA. 1134	
  

Figure 2. Surface air temperature climatology for (top) December-February and (bottom) 1135	
  
June-August (1979-2005). a) MME mean (over the 17 core models plus FGOALS-s2) for 1136	
  
DJF. b) NCEP-DOE Reanalysis 2 estimate of observed surface air temperature 1137	
  
climatology for DJF. c) As in b) but for CRU. d) Standard deviation of surface air 1138	
  
temperature among the 18 model DJF climatological values at each point. e) Difference 1139	
  
between the MME mean climatology in a) and the NCEP-DOE Reanalysis 2. f) As in e) 1140	
  
but for CRU. g)-l) As in a)-f) but for JJA. 1141	
  

Figure 3. Climatological sea surface temperature and precipitation in observations from 1142	
  
HadISSTv1.1 and GPCPv2.2 data sets, and historical simulations from 17 CMIP5 models 1143	
  
for 1979-2004. (a) Observations, (b) MME mean, and (c) MME mean minus 1144	
  
observations, for winter-to-spring (December to May). (d-f) as in (a-c) but for summer-1145	
  
to-fall (April to November). Temperatures are shaded blue/red for values equal or 1146	
  
lower/larger than 23/24°C; the thick black line highlights the 28.5°C isotherm as 1147	
  
indicator of the Western Hemisphere Warm Pool. Precipitation is shaded green for values 1148	
  
equal or larger than 2 mm day-1. Contour intervals are 1°C and 1 mm day-1 for the mean 1149	
  
values and 0.2oC and 2 mm day-1 for the differences. SST/precipitation fields have been 1150	
  
regridded to a common 5°×2.5°/2.5°×2.5° grid. 1151	
  

Figure 4. Vertically integrated moisture transport (vectors) and its divergence (contours) 1152	
  
for the 20CR reanalysis (a,g) and five CMIP5 models for mean JJA (b-f) and DJF (h-l) 1153	
  
for 1981-2000. Vertically integrated moisture transport is computed to 500 hPa using 6-1154	
  
hourly data from the 20CR and one realization each from the historical experiments for 1155	
  
CanESM2, CCSM4, CNRM-CM5, GFDL-ESM2M, and MIROC5 models.  1156	
  

Figure 5. Mean seasonal cycle (1979-2005) of North American regional land water 1157	
  
budget components for 12 CMIP5 models (CanESM2, CSIRO-Mk3-6-0, GFDL-ESM2G, 1158	
  
GISS-E2-H, GISS_E2-R, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-ESM, MIROC-1159	
  
ESM-CHEM, MPI-ESM-LR, MRI-CGCM3, NorESM1-M) compared to the average of 1160	
  
the two off-line LSM simulations (VIC and GLDAS2 Noah). Regions are Western North 1161	
  
America (WNA), Central North America (CNA), Eastern North America (ENA), Alaska 1162	
  
and Western Canada (ALA), Northeast Canada (NEC), and Central America (CAM) as 1163	
  
modified from Giorgi and Francisco (2000) and shown in supplementary Fig. S3. 1164	
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Figure 6. Mean annual runoff (mm/year) (top) and runoff (Q/P) ratio (bottom) for 1979-1165	
  
2004 from observations (Q from VIC and GLDAS2 Noah, and P from GPCP) and the 1166	
  
multi-model average from 15 CMIP5 climate models (BCC-CSM1-1, CanESM2, 1167	
  
CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-ESM2M, GISS-E2-R, 1168	
  
HadCM3, INMCM4, MIROC5, MIROC-ESM, MPI-ESM-LR, MRI-CGCM3, 1169	
  
NorESM1-M). 1170	
  

Figure 7. Comparison of biophysical indicators between observations and the CMIP5 1171	
  
ensemble. Biophysical indicators are (top row) number of summer days, (middle row) 1172	
  
number of frost days, and (bottom row) growing season length averaged over 1979-2005. 1173	
  
Left column shows the observations (left column) from the HadGHCND dataset; middle 1174	
  
column is the multi-model ensemble mean of the 17 core models, and the right column is 1175	
  
their difference (MME – obs.). The frequencies are calculated on the model grid and then 1176	
  
interpolated to 2.0 degree resolution for comparison with the observational estimates. 1177	
  

Figure 8. The frequency of occurrence of persistent extreme precipitation events defined 1178	
  
by SPI6 averaged over positive and negative events for (a) observed precipitation based 1179	
  
on the CPC and UW datasets, (b) BCC-CSM1-1, (c) CanESM2, (d) CCSM4, (e) CNRM-1180	
  
CM5.1, (f) CSIRO-Mk3.6.0, (g) GFDL-CM3, (h) GISS-E2-R, (i) HadCM3, (j) IPSL-1181	
  
CM5A-LR, (k) MIROC5, (l) MIROC-ESM, (m) MPI-ESM-LR, (n) MRI-CGCM3 and 1182	
  
(o) NorESM1-M. The HadCM3 and HadGEM2-ES results are similarly weak and so the 1183	
  
former are shown only. Each data set is treated as one member of the ensemble. 1184	
  

Figure 9. Same as Figure 8 but for persistent soil moisture events. Estimates of observed 1185	
  
soil moisture are taken from the multi-model NLDAS-UW dataset. 1186	
  

Figure 10. (a) Cyclone density for the CFSR analysis showing the number of cyclones 1187	
  
per cool season (November to March) per 50,000 km2 for 1979-2004. (b) Same as (a) 1188	
  
except for the mean (shaded) and spread (contoured every 0.3) of 15 CMIP5 models 1189	
  
ordered from higher to lower spatial resolution: CanESM2, EC-EARTH, MRI-1190	
  
CGCM3,	
  CNRM-CM5, MIRCO5, HadGEM2-ES, HadGEM2-CC, INMCM4, IPSL-1191	
  
CM5A-MR, MPI-ESM-LR, NorESM1-M, GFDL-ESM2M, IPSL-CM5A-LR, BCC-1192	
  
CSM1, MIROC-ESM-CHEM. Same as (a) except for the (c) MPI-ESM-LR, (d) GFDL-1193	
  
ESM2M, (e) HadGEM2-CC, and (f) CCSM4 models. 1194	
  

Figure 11. Number of cyclone central pressures at their maximum intensity (minimum 1195	
  
pressure) for the 1979-2004 cool seasons within the dashed box region in Fig. 10 for a 10 1196	
  
hPa range centered every 10 hPa showing the CFSR (bold blue), (b) CMIP5 MME mean 1197	
  
(bold red), and individual CMIP5 models. 1198	
  

Figure 12. (a) CPC merged precipitation analysis at 2.5 deg resolution showing cool 1199	
  
seasonal average precipitation (shaded every 75 mm) for the 1979-2004 cool seasons 1200	
  
(November – March). (b) Same as (a) except for the CPC Unified precipitation at 0.5 deg 1201	
  
resolution. (c) Same as (a) except for the mean of 14 of the 17 CMIP5 members listed in 1202	
  
(d) and spread (in mm). (d) Number of days that the daily average precipitation (in 1203	
  
mm/day) for the land areas in the black box in (b) occurred within each amount bin for 1204	
  
select CMIP5 members, CMIP5 mean, and the CPC Unified. 1205	
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Figure 13. Comparison of precipitation and temperature extremes for southern US 1206	
  
regions between the CMIP5 models and CPC and GHCN observations, respectively. (left 1207	
  
column) Taylor diagram of the spatial pattern of annual number of days when 1208	
  
precipitation > 10mm day-1 over the southwest (SW), south central (SC) and southeastern 1209	
  
(SE) US. (right column) Taylor diagram of the spatial pattern of annual number of days 1210	
  
when Tmax > 32oC (90F) for the three regions. The standard deviations have been 1211	
  
normalized relative to the observed values. (A: CanESM2, B: CCSM4, C: GFDL-CM3, 1212	
  
D: GFDL-ESM2G, E: GFDL-ESM2M, F: GISS-E2-R, G: HadCM3, H: HadGEM2-CC, 1213	
  
I: HadGEM2-ES, J: IPSL-CM5A-LR, K: MIROC4h, L: MIROC5, M: MPI-ESM-LR, N: 1214	
  
MRI-CGCM3). Observations are from the CPC dataset. SW is defined as the contiguous 1215	
  
US south of 40oN between 125oW and 110oW; SC is the contiguous US south of 40oN 1216	
  
between 110oW and 90oW; SE is the contiguous US south of 40oN between 90oW and 1217	
  
70oW. 1218	
  

Figure 14. Average monthly precipitation for 1979-2005 shown by latitude in the North 1219	
  
American monsoon region (longitudes 102.5 to 115W) from the CMAP observational 1220	
  
estimate (a), the MME mean for the 17 core CMIP5 models (b) and their difference (c), 1221	
  
all in units of mm day-1.	
  1222	
  

Figure 15. Annual cycle in rainfall for the NAM region for the historical (1979-2005) 1223	
  
period of 21 CMIP5 models compared to the P-NOAA AND CMAP observational 1224	
  
datasets for (a) small (phase error = 0), (b) moderate (phase error = 1), (c) large (phase 1225	
  
error = 2-4) phase errors, and (d) all models. 1226	
  

Figure 16. (a)-(c) Averaged summer 925hPa wind during 1971-2000 for NCEP-NCAR 1227	
  
reanalysis, eight-model CMIP5 ensemble mean for the same period, and the reanalysis 1228	
  
minus MME mean, respectively. (d)-(f) Lower troposphere mean vertical profile of 1229	
  
meridional wind averaged over 95˚-100˚W for the reanalysis, MME mean, and the 1230	
  
reanalysis minus MME mean, respectively. (g)-(i) Seasonal cycle of the 925hPa 1231	
  
meridional wind averaged over 27.5º-32.5ºN for the reanalysis, MME mean, and the 1232	
  
reanalysis minus MME mean. All units are m s-1. Shading indicates wind speeds greater 1233	
  
than 3.0 m s-1 in the figures of the first and second columns and wind speeds greater than 1234	
  
1.0m s-1 in the figures of the third column. 1235	
  

Figure 17. September and March sea ice extent from 26 CMIP5 models compared to 1236	
  
observations from the NSIDC from 1953 to 2005. For each model, the boxes represent 1237	
  
inter-quartile ranges (25th to 75th percentiles). Median (50th percentile) extents are 1238	
  
shown by the thick horizontal bar in each box. The width of each box corresponds to the 1239	
  
number of ensemble members for that model. Whiskers (vertical lines and thin horizontal 1240	
  
bars) represent the 10th and 90th percentiles. Mean monthly extents are shown as 1241	
  
diamonds. Corresponding mean, minimum and maximum observed extends are shown as 1242	
  
red and green lines, respectively. 1243	
  

Figure 18. March (left) and September (right) ice thickness (m) for 26 CMIP5 models 1244	
  
averaged over 1993-2005 versus satellite and airborne observations for ERS1/2 (1993-1245	
  
2001), ICESat (2003-2009) and IceBridge (2009-2012). 1246	
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Figure 19. Comparison of CMIP5 models across a set of continental performance metrics 1247	
  
based on bias values given in Tables 3-8. (top) Biases normalized relative to the range of 1248	
  
bias values across models, with lower values indicating lower bias. (bottom) Models 1249	
  
ranked according to bias values, with 1 indicating the model with the lowest bias and 17 1250	
  
the model with the highest bias. Results for models without available data are indicated in 1251	
  
white. The bias metrics shown (in order from left to right) are for regional precipitation 1252	
  
(P) for DJF and JJA, regional temperature (T) for DJF and JJA, annual SSTs for 1253	
  
surrouding oceans (see Figure 3), annual runoff ratios (Q/P), the annual number of 1254	
  
summer days (SuDays), frost days (FrDays) and growing season length (GSL), and east-1255	
  
west gradient in the number of persistent precipitation (P Persist) and soil moisture (SM 1256	
  
Persist) events. 1257	
  

Figure 20. Comparison of CMIP5 and CMIP3 model performance for seasonal (DJF and 1258	
  
JJA) precipitation (P), surface air temperature (T) and SST. Results are shown as RMSE 1259	
  
values calculated for 1971-1999 relative to the GPCP, CRU and HadISST observational 1260	
  
datasets. Precipitation and temperature RMSE values are calculated over North America 1261	
  
(130-60W, 0-60N) and SST RMSE values are calculated over neighboring oceans (170-1262	
  
35W, 10S-40N). The core set of CMIP5 models and their equivalent CMIP3 models 1263	
  
where available (otherwise indicated by N/A) are shown. The MME mean values are also 1264	
  
shown. 1265	
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Table 1. CMIP5 models evaluated and their attributes. The core models are highlighted 1270	
  

with an asterix. 1271	
  

Model Center Atmospheric 
Horizontal 
Resolution 
(lon.  x lat.) 

Number 
of model 

levels 

Reference 

ACCESS1-0 Commonwealth Scientific and 
Industrial Research 
Organization/Bureau of Meteorology, 
Australia 

1.875 x 1.25 38 Bi et al. (2012) 

BCC-CSM1.1* Beijing Climate Center, China 
Meteorological Administration, China 

2.8 x 2.8 26 Xin et al. (2012) 

CanCM4 Canadian Centre for Climate 
Modelling and Analysis, Canada 

2.8 x 2.8 35 Chylek et al. 
(2011) 

CanESM2* Canadian Center for Climate Modeling 
and Analysis, Canada 

2.8 x 2.8 35 Arora et al. 
(2011) 

CCSM4* National Center for Atmospheric 
Research, USA 

1.25 x 0.94 26 Gent et al. 
(2011) 

CESM1-
CAM5-1-FV2 

Community Earth System Model 
Contributors (NSF-DOE- 
NCAR) 

1.4 x 1.4 26 Gent et al. 
(2011) 

CNRM-CM5.1* National Centre for Meteorological 
Research, France 

1.4 x 1.4 31 Voldoire et al. 
(2011) 

CSIRO-MK3.6* Commonwealth Scientific and 
Industrial Research 
Organization/Queensland Climate 
Change Centre of Excellence, AUS 

1.8 x 1.8 18 Rotstayn et al. 
(2010) 

EC-EARTH EC-EARTH consortium 1.125 x 1.12 62 Hazeleger et al. 
(2010)  

FGOALS-S2.0 LASG, Institute of Atmospheric 
Physics, Chinese Academy of Sciences 

2.8 x 1.6 26 Bao et al. 
(2012) 

GFDL-CM3* NOAA Geophysical Fluid Dynamics 
Laboratory, USA 

2.5 x 2.0 48 Donner et al. 
(2011) 

GFDL-
ESM2G/M* 

NOAA Geophysical Fluid Dynamics 
Laboratory, USA 

2.5 x 2.0 48 Donner et al. 
(2011) 

GISS-E2-H/R* NASA Goddard Institute for Space 
Studies, USA 

2.5 x 2.0 40 Kim et al. 
(2012) 

HadCM3* Met Office Hadley Centre, UK 3.75 x 2.5 19 Collins et al. 
(2001) 



	
  

	
  

56 

HADGEM2-CC 
(Chemistry 
coupled) 

Met Office Hadley Centre, UK 1.875 x 1.25 60 Jones et al. 
(2011) 

HadGEM2-
ES* 

Met Office Hadley Centre, UK 1.875 x 1.25 60 Jones et al. 
(2011) 

INMCM4* Institute for Numerical Mathematics, 
Russia 

2 x 1.5 21 Volodin et al. 
(2010) 

IPSL-CM5A-
LR* 

Institut Pierre Simon Laplace, France 3.75 x 1.8  39 Dufresne et al. 
(2012) 

IPSL-CM5A-
MR 

Institut Pierre Simon Laplace, France 2.5 x 1.25 39 Dufresne et al. 
(2012) 

MIROC4h Atmosphere and Ocean Research 
Institute (The University of Tokyo), 
National Institute for Environmental 
Studies, and Japan Agency for Marine-
Earth Science and Technology, Japan 

0.56 x 0.56 56 Sakamoto et al. 
(2012) 

MIROC5* Atmosphere and Ocean Research 
Institute (The University of Tokyo), 
National Institute for Environmental 
Studies, and Japan Agency for Marine-
Earth Science and Technology, Japan 

1.4 x 1.4 40 Watanabe et al. 
(2010) 

MIROC-ESM* Japan Agency for Marine-Earth 
Science and Technology, Atmosphere 
and Ocean Research Institute (The 
University of Tokyo), and National 
Institute for Environmental Studies 

2.8 x 2.8 80 Watanabe et al. 
(2010) 

MIROC-ESM-
CHEM 

Japan Agency for Marine-Earth 
Science and Technology, Atmosphere 
and Ocean Research Institute (The 
University of Tokyo), and National 
Institute for Environmental Studies 

2.8 x 2.8 80 Watanabe et al. 
(2010) 

MPI-ESM-LR* Max Planck Institute for Meteorology, 
Germany 

1.9 x 1.9 47 Zanchettin et al. 
(2012) 

MRI-CGCM3* Meteorological Research Institute, 
Japan 

1.1 x 1.1 48 Yukimoto et al. 
(2011) 

NorESM1-M* Norwegian Climate Center, Norway 2.5 x 1.9 26 Zhang et al. 
(2012)  

	
  1272	
  

1273	
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Table 2. Observational and reanalysis datasets used in the evaluations 1273	
  

Dataset	
   Type	
   Spatial Domain	
   Temporal Domain	
   Reference	
  

Precipitation	
  

CMAP v2	
   Gauge/satellite	
   2.5 deg, global	
   Monthly/pentad, 1979-

present	
  

Xie and Arkin, 1997	
  

GPCP v2.1	
   Gauge/satellite	
   1.0 deg, global	
   Monthly, 1979-2009	
   Adler et al., 2003	
  

CRU TS3.1	
   Gauge	
   0.5 deg, global land	
   Monthly, 1901-2008	
   Mitchell and Jones 

(2005)	
  

CMAP v2 Gauge/satellite 2.5 deg, global Monthly/pentad, 1979-

present 

Xie and Arkin, 1997 

CPC unified	
   Gauge	
   0.5 deg, US	
   Daily, 1948-2010	
   Xie et al., 2010	
  

CPC-US-Mexico	
   Gauge	
   1.0 deg, 

US/Mexico	
  

Daily, 1948-present	
   Higgins et al. (1996)	
  

UW	
   Gauge	
   0.5 deg, US	
   Daily, 1916-2009	
   Maurer et al. (2002)	
  

P-NOAA	
   Gauge	
   0.5 deg, North 

America	
  

Monthly, 1895-2010	
   Cook and Vose, 

2011*	
  

Temperature	
  

CRU TS3.1	
   Gauge	
   0.5 deg, global land	
   Monthly, 1901-2008	
   Mitchell and Jones 

(2005)	
  

GHCN	
   Gauge	
   2.5 degree, global 

land	
  

Daily, varies	
   Vose et al. (1992)	
  

HadGHCND	
   Gauge	
   2.5x3.75 degree, Daily, 1950-2000	
   Caesar et al. (2006)	
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global land	
  

Sea Surface Temperature and Sea Ice	
  

HadISSTv1.1 	
   In-situ/satellite	
   1.0 deg, global 

oceans	
  

Monthly, 1870-

present	
  

Rayner et al. (2003)	
  

NSIDC Sea Ice 

Index	
  

Satellite	
   Arctic Basin	
   Monthly, 1979-present	
   Fetterer et al., 2002	
  

IceSAT	
   Satellite	
   25km, Arctic Basin	
   Monthly, 2003-2008	
   Kwok and 

Cunningham (2008)	
  

Land Surface Hydrology	
  

NLDAS-UW	
   Multiple LSMs	
   0.5 deg US	
   Daily, 1916-2009	
   Wang et al. (2009)	
  

VIC	
   VIC LSM	
   1.0 deg, global land	
   3-hourly, 1948-2008	
   Sheffield et al. (2007)	
  

GLDAS	
   Noah LSM	
   1.0 deg, global land	
   3-hourly, 1979-2008	
   Rodell et al. (2004)	
  

Reanalyses	
  

NCEP-NCAR	
   Model 

reanalysis	
  

~1.9 deg, global	
   6-hourly, 1948-present	
   Kalnay et al. (1996)	
  

NCEP-DOE	
   Model 

reanalysis	
  

~1.9 deg, global	
  

 

6-hourly, 1979-present	
   Kanamitsu et al. 

(2002)	
  

CFSR	
   Model 

reanalysis	
  

~0.3 deg, global	
   6-hourly, 1979-2010	
   Saha et al. (2010)	
  

20CR	
   Model 

reanalysis	
  

2.0 deg, global	
   6-hourly, 1871-present	
   Compo et al. (2011)	
  

*P-NOAA dataset provided by Drs. Russ Vose and Ed Cook. 1274	
  

1275	
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Table 3. DJF and JJA bias (% of observed mean) in CMIP5 continental and regional 1275	
  
precipitation relative to the GPCP observations. North America (NA): 10N to 72N and 1276	
  
190E to 305E; contiguous US (conUS): 25N to 50N and 235W to 285W; the regions are 1277	
  
Alaska (ALA), North East Canada (NEC), Eastern North America (ENA), Central North 1278	
  
America (CNA), West North America (WNA), and Central America (CAM), as modified 1279	
  
from Giorgi and Francisco (2000) and shown in supplementary Fig. S3. 1280	
  

Model NA conUS ALA NEC ENA CNA WNA CAM 
 DJF 

BCC-CSM1-1 14.84 21.39 40.32 -1.40 -10.24 -16.38 47.51 97.71 
CanESM2 -3.80 -5.53 1.24 9.81 -2.23 -13.22 5.26 -21.09 
CCSM4 17.13 10.24 49.31 16.52 -7.87 -20.21 48.87 64.19 
CNRM-CM5 0.44 -1.58 4.50 -0.05 -5.71 -25.48 27.34 1.55 
CSIRO-Mk3-6-0 2.82 5.35 16.78 7.36 -11.15 -8.46 20.41 13.45 
GFDL-CM3 18.92 27.41 19.57 7.98 4.46 -2.60 52.70 59.52 
GFDL-ESM2M 10.09 14.70 4.50 11.77 0.03 -16.67 40.63 45.80 
GISS-E2-R 23.68 25.18 32.55 15.27 1.45 -6.81 47.96 110.22 
HadCM3 2.59 14.43 -9.81 0.84 10.82 -4.61 27.56 -25.27 
HadGEM2-ES 1.38 4.26 -4.11 -9.20 6.66 -4.44 13.90 -4.44 
INMCM4 40.75 25.34 75.24 56.06 14.36 -7.40 71.31 97.49 
IPSL-CM5A-LR 16.64 12.38 53.18 18.24 4.84 -14.11 42.28 25.43 
MIRCO5 7.51 7.94 14.83 11.28 -1.46 -13.67 29.22 28.43 
MIROC-ESM 16.82 8.73 66.33 31.07 -2.38 -37.19 70.34 -12.75 
MPI-ESM-LR 11.87 14.27 11.71 21.56 3.17 -6.02 34.18 18.59 
MRI-CGCM3 24.97 34.43 27.12 -6.09 8.94 -6.16 70.00 85.93 
NorESM1-M 2.17 -6.86 59.74 4.10 -28.15 -39.07 25.49 65.74 
MME mean 12.28 12.48 27.24 11.48 -0.85 -14.26 39.70 38.27 

 JJA 
BCC-CSM1-1 -14.95 -20.74 22.05 -8.61 -20.63 -30.17 -10.90 -16.91 
CanESM2 -25.72 -39.23 40.26 -10.17 -22.26 -49.66 -25.63 -49.05 
CCSM4 -7.04 3.47 23.70 0.92 7.67 -5.36 4.06 -39.06 
CNRM-CM5 -0.13 -4.73 42.30 8.02 10.39 -29.25 31.69 -25.13 
CSIRO-Mk3-6-0 -3.52 -29.14 54.57 4.81 -17.30 -38.92 -3.67 6.61 
GFDL-CM3 7.65 15.95 34.39 20.85 -4.38 7.45 54.74 -31.10 
GFDL-ESM2M 7.35 12.03 61.15 21.49 -5.20 2.66 49.86 -31.24 
GISS-E2-R 20.81 32.35 14.93 11.93 22.82 24.24 66.36 -9.00 
HadCM3 -3.44 1.16 26.83 8.19 0.57 0.73 19.82 -40.07 
HadGEM2-ES -1.41 -15.89 72.29 14.40 -0.04 -32.63 4.59 -16.90 
INMCM4 4.00 -1.74 43.12 31.19 17.89 -19.67 44.51 -44.06 
IPSL-CM5A-LR -13.67 -1.62 16.88 3.27 9.85 -13.26 13.83 -63.80 
MIRCO5 3.32 0.72 38.38 -3.87 10.09 -17.38 36.93 -13.17 
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MIROC-ESM -4.37 4.37 47.01 6.18 1.62 -27.95 69.36 -56.12 
MPI-ESM-LR 9.05 11.02 37.85 19.95 14.30 8.21 10.36 -14.15 
MRI-CGCM3 10.98 16.85 23.16 9.44 6.35 0.48 61.05 -10.33 
NorESM1-M -10.01 11.48 12.31 -9.71 2.99 12.31 9.47 -51.51 
MME mean -1.24 -0.22 35.95 7.55 2.04 -12.25 25.67 -29.70 

 1281	
  

1282	
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Table 4. As Table 3, but for temperature with bias in oC. 1282	
  

Model NA conUS ALA NEC ENA CNA WNA CAM 
 DJF 

BCC-CSM1-1 -0.97 -1.98 1.95 -1.61 -1.29 -1.30 -1.88 -1.20 
CanESM2 2.09 2.04 1.46 3.13 4.79 4.06 0.74 -0.84 
CCSM4 0.01 -0.53 1.81 -0.30 1.03 -0.22 -0.37 -2.04 
CNRM-CM5 -1.87 -1.95 -3.88 -0.99 -0.54 -0.55 -2.39 -2.54 
CSIRO-Mk3-6-0 -1.61 -2.05 -2.31 -1.51 -1.04 -2.27 -1.31 -1.92 
GFDL-CM3 1.37 -0.03 4.07 3.04 1.15 1.25 0.27 -2.31 
GFDL-ESM2M 1.67 -0.84 5.05 5.75 1.35 0.75 -0.40 -3.31 
GISS-E2-R -0.33 -1.21 0.72 1.00 -0.56 -0.51 -1.13 -1.23 
HadCM3 -2.88 -3.46 -3.72 -2.16 -1.51 -3.53 -3.48 -2.00 
HadGEM2-ES -3.81 -2.98 -7.00 -5.12 -1.61 -3.15 -3.47 -1.54 
INMCM4 1.71 0.26 3.73 3.38 1.87 1.48 1.51 -3.71 
IPSL-CM5A-LR 0.15 -1.14 4.16 -0.12 0.00 -0.64 -0.64 -2.27 
MIRCO5 1.02 0.65 0.74 2.14 1.78 1.16 0.27 0.39 
MIROC-ESM 3.29 1.74 4.22 6.74 3.90 3.00 1.35 0.73 
MPI-ESM-LR -0.08 0.30 -1.85 1.50 0.64 1.28 -0.93 -0.10 
MRI-CGCM3 -0.37 -0.37 1.78 -2.63 -1.33 0.38 0.56 -2.26 
NorESM1-M -0.89 -1.60 2.12 -2.14 -0.34 -1.44 -1.48 -1.81 
MME mean -0.09 -0.77 0.77 0.59 0.49 -0.01 -0.75 -1.65 
 JJA 
BCC-CSM1-1 -0.76 0.54 -3.24 -1.40 0.16 1.80 -0.78 -0.20 
CanESM2 3.14 4.11 1.77 3.17 3.14 5.76 3.60 0.62 
CCSM4 1.10 1.37 -0.13 1.55 1.21 2.04 1.78 -0.82 
CNRM-CM5 0.41 -0.06 1.57 1.23 -0.72 1.16 0.08 -1.37 
CSIRO-Mk3-6-0 1.30 2.97 -1.25 -0.11 1.38 5.18 1.45 1.46 
GFDL-CM3 -1.96 -2.24 -1.47 -2.60 -1.37 -2.27 -2.04 -1.65 
GFDL-ESM2M -0.36 -0.59 -0.29 0.25 -0.34 -0.19 -0.75 -0.67 
GISS-E2-R -0.64 -2.09 1.71 0.79 -0.46 -1.74 -2.10 -1.25 
HadCM3 -1.12 -0.74 -1.41 -1.73 -1.70 0.08 -1.30 -0.23 
HadGEM2-ES 1.17 1.79 0.98 0.29 0.95 2.56 2.22 -1.36 
INMCM4 -0.82 -2.07 0.78 1.23 -1.68 -1.02 -2.05 -2.52 
IPSL-CM5A-LR 0.38 -1.22 2.60 2.45 0.35 0.01 -1.43 -1.40 
MIRCO5 2.63 2.30 3.88 2.56 2.15 3.11 2.79 0.26 
MIROC-ESM 2.76 1.89 2.91 4.09 3.03 3.31 1.67 2.20 
MPI-ESM-LR -0.84 -0.66 -1.31 -0.40 -0.81 -0.09 -1.55 0.02 
MRI-CGCM3 -0.37 -1.77 2.10 1.23 -0.77 -0.97 -1.80 -2.04 
NorESM1-M -1.02 -0.51 -3.05 -0.90 -0.87 -0.64 0.03 -1.35 
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MME mean 0.29 0.18 0.36 0.69 0.21 1.06 -0.01 -0.61 

1283	
  



	
  

	
  

63 

Table 5. CMIP5 error statistics for annual average SSTs. Statistics are calculated over 1283	
  
neighboring oceans to North America (170-35oW, 10S-40oN; domain displayed in Fig. 3) 1284	
  
for average annual values for 1979-2004. 1285	
  

Model Spatial Correlation RMSE (oC) Bias (oC) 
BCC-CSM1.1            0.95 0.98 -0.15 
CanESM2  0.97 0.87 -0.16 
CCSM4  0.96 0.88 0.37 
CNRM-CM5.1  0.96 0.94 -0.63 
CSIRO-MK3.6          0.94 1.39 -1.80 
GFDL-CM3             0.94 1.05 -0.68 
GFDL-ESM2M  0.94 1.08 -0.46 
GISS-E2-R  0.95 0.98 -0.15 
HadCM3  0.94 1.53 -0.64 
HadGEM2-ES  0.96 0.95 -0.96 
INMCM4  0.94 1.06 -0.01 
IPSL-CM5A-LR  0.93 1.32 -0.78 
MIROC5  0.95 0.95 -0.65 
MIROC-ESM  0.91 1.32 -0.60 
MPI-ESM-LR  0.96 0.95 -0.49 
MRI-CGCM3  0.95 1.25 -0.49 
NorESM1-M  0.92 1.21 -0.78 
MME mean  0.97 0.77 -0.54 
 1286	
  

1287	
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Table 6. Spatial correlations between simulated and observed estimates of divergence for 1287	
  

summer (JJA) and winter (DJF) seasons for the North American region. The CMIP5 1288	
  

model data were regridded to the 20CR grid for this calculation. 	
  1289	
  

Model Spatial Correlation 
 Summer (JJA) 
CanESM2 0.28 
CCSM4 0.18 
CNRM-CM5 0.39 
GFDL-ESM2M 0.08 
MIROC5 0.42 
 Winter (DJF) 
CanESM2 0.76 
CCSM4 0.72 
CNRM-CM5 0.75 
GFDL-ESM2M 0.66 
MIROC5 0.60 
 1290	
  

1291	
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Table 7. Bias (model minus observations) in annual runoff ratio (total runoff / 1291	
  

precipitation) averaged over 1979-2004 for the North American continent, the contiguous 1292	
  

US and the six regions defined in Table 3. 1293	
  

Model NA conUS ALA NEC ENA CNA WNA CAM 
BCC-CSM1-1 0.09 0.06 0.36 -0.10 -0.04 -0.03 0.11 0.21 

CanESM2 0.40 0.26 0.69 0.56 0.35 0.20 0.43 0.12 
CCSM4 0.36 0.19 0.75 0.51 0.31 0.10 0.37 0.15 

CNRM-CM5 0.38 0.26 0.54 0.52 0.39 0.17 0.42 0.22 
CSIRO-Mk3-6-0 0.30 0.19 0.53 0.37 0.28 0.16 0.26 0.26 

GFDL-CM3 0.33 0.24 0.47 0.47 0.37 0.18 0.35 0.16 
GFDL-ESM2M 0.32 0.25 0.36 0.38 0.36 0.16 0.36 0.30 

GISS-E2-R 0.22 0.19 0.15 0.28 0.28 0.14 0.27 0.20 
HadCM3 0.37 0.29 0.57 0.54 0.43 0.31 0.31 0.03 
INMCM4 0.37 0.21 0.64 0.55 0.33 0.12 0.40 0.11 
MIRCO5 0.33 0.21 0.58 0.49 0.40 0.17 0.29 0.23 

MIROC-ESM 0.37 0.25 0.56 0.49 0.44 0.12 0.36 0.10 
MPI-ESM-LR 0.31 0.21 0.55 0.46 0.33 0.18 0.30 0.11 
MRI-CGCM3 0.42 0.32 0.64 0.55 0.46 0.28 0.40 0.28 
NorESM1-M 0.35 0.18 0.77 0.51 0.30 0.11 0.34 0.15 
MME mean 0.33 0.22 0.54 0.44 0.33 0.16 0.33 0.18 

 1294	
  

 1295	
  

1296	
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Table 8. Bias and spatial correlation between the HadGHCND observations and the 1296	
  
CMIP5 ensemble for number of summer days, number of frost days and growing season 1297	
  
length averaged over 1979-2005. 1298	
  

 Number of  
summer days 

Number of  
frost days 

Growing season 
length (days) 

Model Bias 
(days) 

Spatial 
correlation 

Bias 
(days) 

Spatial 
correlation 

Bias 
(days) 

Spatial 
correlation 

BCC-CSM1-1 -14.0 0.95 -4.7 0.96 -7.8 0.91 
CanESM2 17.1 0.96 -16.4 0.93 -12.1 0.90 
CCSM4 0.0 0.88 -3.5 0.95 -9.0 0.92 
CNRM-CM5 -7.4 0.92 12.6 0.92 -14.2 0.89 
CSIRO-Mk3-6-0 -8.2 0.98 3.7 0.95 -4.3 0.90 
GFDL-CM3 -39.5 0.93 0.6 0.97 -24.6 0.93 
GFDL-ESM2M 33.0 0.92 -7.8 0.96 -5.6 0.92 
GISS-E2-R 33.5 0.94 -12.8 0.96 7.4 0.96 
HadCM3 -21.9 0.98 21.6 0.95 -38.2 0.88 
HadGEM2-ES -6.9 0.92 2.2 0.97 -14.9 0.95 
INMCM4 -28.8 0.94 17.0 0.85 -76.1 0.53 
IPSL-CM5A-LR -39.3 0.85 4.1 0.97 -6.5 0.95 
MIROC5 1.3 0.91 -15.1 0.98 33.4 0.96 
MIROC-ESM -5.7 0.90 -34.7 0.97 38.5 0.96 
MRI-CGCM3 -34.8 0.87 -6.8 0.95 4.0 0.95 
MPI-ESM-LR -30.4 0.92 -12.5 0.94 5.5 0.93 
NorESM1-M -21.6 0.89 -3.7 0.96 -19.7 0.93 
MME mean -18.1 0.96 -2.8 0.97 -8.5 0.95 

 1299	
  

1300	
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Table 9. Frequency of occurrence of persistent extreme precipitation and soil moisture 1300	
  
events over the US for the CPC observations/NLDAS analysis and 15 CMIP5 models. 1301	
  

Model  SPI6 SM 
Obs/Analysis 0.37 0.68 
BCC-CSM1.1 0.00 0.05 
CanESM2 0.29 0.32 
CCSM4 0.35 0.14 
CNRM-CM5.1 0.16 0.30 
CSIRO-Mk3.6.0 0.02 0.70 
GFDL-CM3 0.02 0.01 
GISS-E2-R 0.04 0.47 
HadCM3 0.00 0.32 
HadGEM2-ES 0.00 0.37 
IPSL-CM5A-LR 0.21 0.20 
MIROC5 0.34 0.25 
MIROC-ESM 0.26 0.27 
MPI-ESM-LR 0.23 0.62 
MRI-CGCM3 0.16 0.01 
NorESM1-M 0.01 0.08 

 1302	
  

 1303	
  

1304	
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Table 10: Error statistics for the CMIP5 model precipitation over the northeastern US. 1304	
  
The mean absolute error (mm per season), RMSE (mm day-1), and mean bias 1305	
  
(model/observed) for 14 CMIP5 models verified using the daily CPC-Unified 1306	
  
precipitation within the black box in Fig. 10b.  1307	
  

Model Mean Absolute 
Error 

(mm/season) 

Root Mean 
Square Error 

(mm/day) 

Mean Bias 
(model/obs) 

MME mean 84.55 0.89 1.10 

CanESM2 94.02 1.08 1.04 

CCSM4 101.07 1.06 1.10 

GFDL_ESM2M 101.32 1.15 1.13 

GFDL_CM3 103.53 1.14 1.14 

BCC-CSM1-1 104.62 1.16 1.08 

CNRM_CM5 104.99 1.12 1.16 

HadGEM_ES 105.41 1.18 1.16 

MIROC_ESM 111.21 1.25 0.92 

NorESM1_M 112.70 1.23 1.08 

CSIRO_Mk_3_6_0 114.49 1.46 1.03 

IPSL_CM5A_LR 115.96 1.27 1.03 

MIROC5 118.35 1.28 1.20 

INMCM4 123.83 1.34 1.20 

MRI_CGCM3 126.15 1.48 1.12 
 1308	
  
 1309	
  

1310	
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Table 11. Annual bias in the number of heavy precipitation days (precipitation > 10mm 1310	
  
day-1) and hot days (Tmax > 32oC (90oF) for the southern US regions (defined in Figure 1311	
  
13). Observed actual values from the GHCN and CPC datasets are shown in parentheses. 1312	
  

 Number of heavy 
precipitation days Number of hot days 

 SW SC SE SW SC SE 
Obs (8.5) (23.4) (37.5) (55.8) (59.5) (40.1) 
CanESM2 -6.8 -16.9 -24.3 13.8 8.0 34.7 
CCSM4 2.4 -9.6 -11.1 -8.3 -5.6 -20.6 
GFDL-CM3 0.1 -16.1 -23.1 -39.9 -49.4 -37.4 
GFDL-ESM2G 7.8 3.0 1.3 -35.4 -31.0 -23.6 
GFDL-ESM2M 8.2 3.1 2.4 -33.1 -26.4 -19.4 
GISS-E2-R 18.9 7.3 11.4 -34.9 -41.3 -35.5 
HadCM3 -6.3 -20.9 -29.2 5.0 8.3 -15.0 
HadGEM2-CC 2.0 -0.5 1.3 7.8 -5.5 -18.2 
IHadGEM2-ES -3.5 -5.3 -1.0 9.6 -0.3 -15.8 
IPSL-CM5A-LR -3.9 -20.5 -29.0 -49.0 -35.5 -38.3 
MIROC4h 1.3 -5.0 -2.5 -17.2 14.3 10.7 
MIROC5 -3.2 -13.1 -13.5 -14.1 13.8 1.6 
MPI-ESM-LR 2.6 -8.9 -4.3 -26.9 -19.0 -27.6 
MRI-CGCM3 9.6 -4.9 -1.3 -39.6 -46.1 -38.7 
MME mean 2.1 -7.7 -8.8 -18.7 -12.6 -17.4 

 1313	
  

 1314	
  

 1315	
  

1316	
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Table 12. Annual mean RMSE for precipitation (mm day-1) for each of the 17 core 1316	
  
CMIP5 models compared with CMAP observed estimates for the North American 1317	
  
Monsoon region 20-35oN, 102.5-115oW. 1318	
  

 1319	
  
Model RMSE (mm day-1) 

BCC-CSM1-1 1.92 
CCSM4 1.53 
CNRM-CM5 1.29 
CSIRO-Mk3 1.09 
CanESM2 0.44 
GFDL-CM3 1.54 
GFDL-ESM2M 1.72 
GISS-E2-R 1.46 
HadCM3 0.63 
HadGEM2-ES 0.75 
INMCM4 1.11 
IPSL-CM5A-LR 0.99 
MIROC-ESM 1.32 
MIROC5 1.58 
MPI-ESM-LR 1.09 
MRI-CGCM3 2.08 
NorESM1-M 1.96 
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Table 13. CMIP5 model error statistics for the simulation of the NAM in the core region, 1321	
  
calculated with respect to the P-NOAA observational dataset. 1322	
  

Model RMSE (mm day-1) Bias (%) Lag (months) 
BCC-CSM1-1 1.96 83.6 0 
CanESM2 1.11 -41.6 0 
CCSM4 1.24 70.7 0 
CNRM-CM5 0.75 40.4 0 
CSIRO 0.77 24.6 0 
GFDL-CM3 1.57 74.6 1 
GFDL-ESM2G 2.74 137.7 0 
GFDL-ESM2M 2.48 117.8 1 
GISS-E2-R 1.90 23.5 4 
HadCM3 0.83 0.2 0 
HadGEM2-CC 0.88 44.8 0 
HadGEM2-ES 0.85 37.9 0 
INMCM4 1.67 -9.7 4 
IPSL-CM5A-LR 1.26 29.6 1 
IPSL-CM5A-MR 0.92 1.4 1 
MIROC-ESM 1.64 40.0 2 
MIROC4h 1.32 65.4 0 
MIROC5 1.71 91.4 0 
MPI-ESM-LR 1.36 72.8 0 
MRI-CGCM3 1.40 79.4 0 
NorESM1-M 2.33 110.4 1 
MME mean 1.46 52.10 0.71 
 1323	
  

	
  1324	
  

1325	
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Table 14. Error statistics for the simulation of the GPLLJ. The statistics are calculated 1325	
  
over the regions shown in Fig. 17 and are the RMSE and the Index of Agreement 1326	
  
(Legates and McCabe 1999; McCabe et al. 2002).  1327	
  
 1328	
  

RMSE Index of Agreement  
Model Intensity 

(vertical) 
Seasonal 

cycle 
Spatial 
extent 

Average Vertical 
structure 

Seasonal 
cycle 

Spatial 
extent 

Average 

CanESM2 0.87 0.85 0.87 0.87 0.95 0.96 0.94 0.95 
CCSM4 0.91 0.88 0.86 0.88 0.95 0.96 0.94 0.95 
CNRM-CM5 0.66 0.74 0.85 0.75 0.97 0.97 0.93 0.96 
GFDL-ESM2M 0.90 1.01 0.85 0.92 0.93 0.93 0.92 0.93 
HadGEM2-ES 1.06 0.98 0.84 0.96 0.92 0.95 0.95 0.94 
MIROC5 1.12 0.65 0.88 0.88 0.91 0.98 0.93 0.94 
MPI-ESM-LR 0.76 0.85 0.77 0.79 0.95 0.96 0.94 0.95 
MRI-CGCM3 1.04 1.28 0.92 1.08 0.90 0.89 0.90 0.90 

 1329	
  
1330	
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Table 15. Biases in CMIP5 model Arctic sea ice extent and thickness. Biases are based 1330	
  
on the ensemble mean for each model that has more than one ensemble member and 1331	
  
computed relative to the observed value. September extent bias in 106 km2.. March ice 1332	
  
thickness bias in meters. 1333	
  

Model September extent bias 
106 km2 

March thickness bias 
m 

BCC-CSM1-1 -0.439 -0.05 
CanCM4 -1.881 -0.76 
CanESM2 -2.221 -0.44 
CCSM4 0.537 0.08 
CESM1-CAM5 0.698 0.11 
CNRM-CM5 -0.638 -0.27 
CSIRO-MK6 3.952 0.31 
FGOALS-s2 2.309 -0.06 
GFDL-CM3 0.231 -0.37 
GISS-E2-H -2.979 - 
GISS-E2-R -2.653 -0.31 
HadCM3 -0.772 -0.20 
HadGEM2 -1.845 -1.06 
HadGEM2-CC -0.035 -0.52 
HadGEM2-ES -1.318 -0.90 
INMCM4 -1.468 -0.04 
IPSL-CM5A-LR 0.708 0.02 
IPSL-CM5A-MR -0.718 -0.32 
MIROC-ESM-CHEM -0.465 -0.81 
MIROC-ESM -0.783 -0.85 
MIROC4h -1.673 -0.71 
MIROC5 -0.918 -0.04 
MPI-ESM-LR 0.070 -0.57 
MRI-CGCM3 -0.931 -0.16 
NorESM1-M 1.205 -0.30 
 1334	
  

 1335	
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 1336	
  

Figure 1. Precipitation climatology for (left) December-February and (right) June-August 1337	
  
(1979-2005). a) GPCP estimate of observed precipitation for DJF. b) MME mean over 1338	
  
the 18 models for DJF; for models with multiple runs, all runs are averaged before 1339	
  
inclusion in the multi-model ensemble. c) Comparison of individual models to 1340	
  
observations using the 3 mm day-1 contour as an index of the major precipitation features: 1341	
  
half the models are shown in each of sub-panel I and II with the legend giving the color-1342	
  
coding for the models in each. Shading shows the regions where GPCP exceeds 3 mm 1343	
  
day-1; a model with no error would have its contour fall exactly along the edge of the 1344	
  
shaded region. d)-f) As in a)-c), respectively, except for JJA. 1345	
  

 1346	
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 1347	
  

Figure 2. Surface air temperature climatology for (top) December-February and (bottom) 1348	
  
June-August (1979-2005). a) MME mean (over the 17 core models plus FGOALS-s2) for 1349	
  
DJF. b) NCEP-DOE Reanalysis 2 estimate of observed surface air temperature 1350	
  
climatology for DJF. c) As in b) but for CRU. d) Standard deviation of surface air 1351	
  
temperature among the 18 model DJF climatological values at each point. e) Difference 1352	
  
between the MME mean climatology in a) and the NCEP-DOE Reanalysis 2. f) As in e) 1353	
  
but for CRU. g)-l) As in a)-f) but for JJA. 1354	
  

 1355	
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 1356	
  

1357	
  
Figure 3. Climatological sea surface temperature and precipitation in observations from 1358	
  
HadISSTv1.1 and GPCPv2.2 data sets, and historical simulations from 17 CMIP5 models 1359	
  
for 1979-2004. (a) Observations, (b) MME mean, and (c) MME mean minus 1360	
  
observations, for winter-to-spring (December to May). (d-f) as in (a-c) but for summer-1361	
  
to-fall (April to November). Temperatures are shaded blue/red for values equal or 1362	
  
lower/larger than 23/24°C; the thick black line highlights the 28.5°C isotherm as 1363	
  
indicator of the Western Hemisphere Warm Pool. Precipitation is shaded green for values 1364	
  
equal or larger than 2 mm day-1. Contour intervals are 1°C and 1 mm day-1 for the mean 1365	
  
values and 0.2oC and 2 mm day-1 for the differences. SST/precipitation fields have been 1366	
  
regridded to a common 5°×2.5°/2.5°×2.5° grid. 1367	
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 1368	
  

Figure 4. Vertically integrated moisture transport (vectors) and its divergence (contours) 1369	
  
for the 20CR reanalysis (a,g) and five CMIP5 models for mean JJA (b-f) and DJF (h-l) 1370	
  
for 1981-2000. Vertically integrated moisture transport is computed to 500 hPa using 6-1371	
  
hourly data from the 20CR and one realization each from the historical experiments for 1372	
  
CanESM2, CCSM4, CNRM-CM5, GFDL-ESM2M, and MIROC5 models.  1373	
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 1374	
  

Figure 5. Mean seasonal cycle (1979-2005) of North American regional land water 1375	
  
budget components for 12 CMIP5 models (CanESM2, CSIRO-Mk3-6-0, GFDL-ESM2G, 1376	
  
GISS-E2-H, GISS_E2-R, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-ESM, MIROC-1377	
  
ESM-CHEM, MPI-ESM-LR, MRI-CGCM3, NorESM1-M) compared to the average of 1378	
  
the two off-line LSM simulations (VIC and GLDAS2 Noah). Regions are Western North 1379	
  
America (WNA), Central North America (CNA), Eastern North America (ENA), Alaska 1380	
  
and Western Canada (ALA), Northeast Canada (NEC), and Central America (CAM) as 1381	
  
modified from Giorgi and Francisco (2000) and shown in supplementary Fig. S3.  1382	
  

1383	
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 1383	
  

 1384	
  

 1385	
  

Figure 6. Mean annual runoff (mm/year) (top) and runoff (Q/P) ratio (bottom) for 1979-1386	
  
2004 from observations (Q from VIC and GLDAS2 Noah, and P from GPCP) and the 1387	
  
multi-model average from 15 CMIP5 climate models (BCC-CSM1-1, CanESM2, 1388	
  
CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-ESM2M, GISS-E2-R, 1389	
  
HadCM3, INMCM4, MIROC5, MIROC-ESM, MPI-ESM-LR, MRI-CGCM3, 1390	
  
NorESM1-M).  1391	
  

 1392	
  

 1393	
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 1394	
  

Figure 7. Comparison of biophysical indicators between observations and the CMIP5 1395	
  
ensemble. Biophysical indicators are (top row) number of summer days, (middle row) 1396	
  
number of frost days, and (bottom row) growing season length averaged over 1979-2005. 1397	
  
Left column shows the observations (left column) from the HadGHCND dataset; middle 1398	
  
column is the multi-model ensemble mean of the 17 core models, and the right column is 1399	
  
their difference (MME – obs.). The frequencies are calculated on the model grid and then 1400	
  
interpolated to 2.0 degree resolution for comparison with the observational estimates. 1401	
  

 1402	
  

 1403	
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 1404	
  

Figure 8. The frequency of occurrence of persistent extreme precipitation events defined 1405	
  
by SPI6 averaged over positive and negative events for (a) observed precipitation based 1406	
  
on the CPC and UW datasets, (b) BCC-CSM1-1, (c) CanESM2, (d) CCSM4, (e) CNRM-1407	
  
CM5.1, (f) CSIRO-Mk3.6.0, (g) GFDL-CM3, (h) GISS-E2-R, (i) HadCM3, (j) IPSL-1408	
  
CM5A-LR, (k) MIROC5, (l) MIROC-ESM, (m) MPI-ESM-LR, (n) MRI-CGCM3 and 1409	
  
(o) NorESM1-M. The HadCM3 and HadGEM2-ES results are similarly weak and so the 1410	
  
former are shown only. Each data set is treated as one member of the ensemble. 1411	
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 1412	
  

Figure 9. Same as Figure 8 but for persistent soil moisture events. Estimates of observed 1413	
  
soil moisture are taken from the multi-model NLDAS-UW dataset.	
  1414	
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  1415	
  

Figure 10. (a) Cyclone density for the CFSR analysis showing the number of cyclones 1416	
  
per cool season (November to March) per 50,000 km2 for 1979-2004. (b) Same as (a) 1417	
  
except for the mean (shaded) and spread (contoured every 0.3) of 15 CMIP5 models 1418	
  
ordered from higher to lower spatial resolution: CanESM2, EC-EARTH, MRI-1419	
  
CGCM3,	
  CNRM-CM5, MIRCO5, HadGEM2-ES, HadGEM2-CC, INMCM4, IPSL-1420	
  
CM5A-MR, MPI-ESM-LR, NorESM1-M, GFDL-ESM2M, IPSL-CM5A-LR, BCC-1421	
  
CSM1, MIROC-ESM-CHEM. Same as (a) except for the (c) MPI-ESM-LR, (d) GFDL-1422	
  
ESM2M, (e) HadGEM2-CC, and (f) CCSM4 models. 1423	
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  1424	
  

Figure 11. Number of cyclone central pressures at their maximum intensity (minimum 1425	
  
pressure) for the 1979-2004 cool seasons within the dashed box region in Fig. 10 for a 10 1426	
  
hPa range centered every 10 hPa showing the CFSR (bold blue), (b) CMIP5 MME mean 1427	
  
(bold red), and individual CMIP5 models.	
  1428	
  

 1429	
  
1430	
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 1430	
  

Figure 12. (a) CPC merged precipitation analysis at 2.5 deg resolution showing cool 1431	
  
seasonal average precipitation (shaded every 75 mm) for the 1979-2004 cool seasons 1432	
  
(November – March). (b) Same as (a) except for the CPC Unified precipitation at 0.5 deg 1433	
  
resolution. (c) Same as (a) except for the mean of 14 of the 17 CMIP5 members listed in 1434	
  
(d) and spread (in mm). (d) Number of days that the daily average precipitation (in 1435	
  
mm/day) for the land areas in the black box in (b) occurred within each amount bin for 1436	
  
select CMIP5 members, CMIP5 mean, and the CPC Unified. 1437	
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Figure 13. Comparison of precipitation and temperature extremes for southern US 1443	
  
regions between the CMIP5 models and CPC and GHCN observations, respectively. (left 1444	
  
column) Taylor diagram of the spatial pattern of annual number of days when 1445	
  
precipitation > 10mm day-1 over the southwest (SW), south central (SC) and southeastern 1446	
  
(SE) US. (right column) Taylor diagram of the spatial pattern of annual number of days 1447	
  
when Tmax > 32oC (90F) for the three regions. The standard deviations have been 1448	
  
normalized relative to the observed values. (A: CanESM2, B: CCSM4, C: GFDL-CM3, 1449	
  
D: GFDL-ESM2G, E: GFDL-ESM2M, F: GISS-E2-R, G: HadCM3, H: HadGEM2-CC, 1450	
  
I: HadGEM2-ES, J: IPSL-CM5A-LR, K: MIROC4h, L: MIROC5, M: MPI-ESM-LR, N: 1451	
  
MRI-CGCM3). Observations are from the CPC dataset. SW is defined as the contiguous 1452	
  
US south of 40oN between 125oW and 110oW; SC is the contiguous US south of 40oN 1453	
  
between 110oW and 90oW; SE is the contiguous US south of 40oN between 90oW and 1454	
  
70oW. 1455	
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 1457	
  

Figure 14. Average monthly precipitation for 1979-2005 shown by latitude in the North 1458	
  
American monsoon region (longitudes 102.5 to 115W) from the CMAP observational 1459	
  
estimate (a), the MME mean for the 17 core CMIP5 models (b) and their difference (c), 1460	
  
all in units of mm day-1.  1461	
  

  1462	
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Figure 15. Annual cycle in rainfall for the NAM region for the historical (1979-2005) 1463	
  
period of 21 CMIP5 models compared to the P-NOAA AND CMAP observational 1464	
  
datasets for (a) small (phase error = 0), (b) moderate (phase error = 1), (c) large (phase 1465	
  
error = 2-4) phase errors, and (d) all models. 1466	
  

 1467	
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 1469	
  

Figure 16. (a)-(c) Averaged summer 925hPa wind during 1971-2000 for NCEP-NCAR 1470	
  
reanalysis, eight-model CMIP5 ensemble mean for the same period, and the reanalysis 1471	
  
minus MME mean, respectively. (d)-(f) Lower troposphere mean vertical profile of 1472	
  
meridional wind averaged over 95˚-100˚W for the reanalysis, MME mean, and the 1473	
  
reanalysis minus MME mean, respectively. (g)-(i) Seasonal cycle of the 925hPa 1474	
  
meridional wind averaged over 27.5º-32.5ºN for the reanalysis, MME mean, and the 1475	
  
reanalysis minus MME mean. All units are m s-1. Shading indicates wind speeds greater 1476	
  
than 3.0 m s-1 in the figures of the first and second columns and wind speeds greater than 1477	
  
1.0m s-1 in the figures of the third column. 1478	
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 1482	
  

Figure 17. September and March sea ice extent from 26 CMIP5 models compared to 1483	
  
observations from the NSIDC from 1953 to 2005. For each model, the boxes represent 1484	
  
inter-quartile ranges (25th to 75th percentiles). Median (50th percentile) extents are 1485	
  
shown by the thick horizontal bar in each box. The width of each box corresponds to the 1486	
  
number of ensemble members for that model. Whiskers (vertical lines and thin horizontal 1487	
  
bars) represent the 10th and 90th percentiles. Mean monthly extents are shown as 1488	
  
diamonds. Corresponding mean, minimum and maximum observed extends are shown as 1489	
  
red and green lines, respectively. 1490	
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 1492	
  

Figure 18. March (left) and September (right) ice thickness (m) for 26 CMIP5 models 1493	
  
averaged over 1993-2005 versus satellite and airborne observations for ERS1/2 (1993-1494	
  
2001), ICESat (2003-2009) and IceBridge (2009-2012). 1495	
  

 1496	
  

  1497	
  
 1498	
  
 1499	
  
 1500	
  

 1501	
  

 1502	
  

 1503	
  



	
  

	
  

92 

1504	
  

 1505	
  

Figure 19. Comparison of CMIP5 models across a set of continental performance metrics 1506	
  
based on bias values given in Tables 3-8. (top) Biases normalized relative to the range of 1507	
  
bias values across models, with lower values indicating lower bias. (bottom) Models 1508	
  
ranked according to bias values, with 1 indicating the model with the lowest bias and 17 1509	
  
the model with the highest bias. Results for models without available data are indicated in 1510	
  
white. The bias metrics shown (in order from left to right) are for regional precipitation 1511	
  
(P) for DJF and JJA, regional temperature (T) for DJF and JJA, annual SSTs for 1512	
  
surrouding oceans (see Figure 3), annual runoff ratios (Q/P), the annual number of 1513	
  
summer days (SuDays), frost days (FrDays) and growing season length (GSL), and east-1514	
  
west gradient in the number of persistent precipitation (P Persist) and soil moisture (SM 1515	
  
Persist) events. 1516	
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 1517	
  

Figure 20. Comparison of CMIP5 and CMIP3 model performance for seasonal (DJF and 1518	
  
JJA) precipitation (P), surface air temperature (T) and SST. Results are shown as RMSE 1519	
  
values calculated for 1971-1999 relative to the GPCP, CRU and HadISST observational 1520	
  
datasets. Precipitation and temperature RMSE values are calculated over North America 1521	
  
(130-60W, 0-60N) and SST RMSE values are calculated over neighboring oceans (170-1522	
  
35W, 10S-40N). The core set of CMIP5 models and their equivalent CMIP3 models 1523	
  
where available (otherwise indicated by N/A) are shown. The MME mean values are also 1524	
  
shown. 1525	
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